刘晓冀,张苗,BENITEZ Julio.$k$-次幂等矩阵线性组合群逆和超广义幂等矩阵线性组合Moore-Penrose广义逆的表[J].数学年刊A辑,2014,35(4):463~478
$k$-次幂等矩阵线性组合群逆和超广义幂等矩阵线性组合Moore-Penrose广义逆的表
Expressions of the Group Inverse of the Linear Combinations of k-Idempotent Matricesand the Moore-Penrose Generalized Inverse of the Linear Combinations of theHypergeneralized Idempotent Matrices
  
DOI:
中文关键词:  线性组合, 立方幂等矩阵, $k$-次幂等矩阵, 超广义幂等矩阵
英文关键词:Linear combinations, Tripotent matrices, $k$-Idempotent matrices, Hypergeneralized idempotent matrices
基金项目:国家自然科学基金 (No.11361009), 广西省自然科学基金(No.2013GXNSFAA019008), 广西教育厅重点项目(No.201202ZD031) 和瓦伦西亚理工大学科研项目(No.SP20120474, No.SP20120498)
Author NameAffiliationE-mail
LIU Xiaoji College of Science, Guangxi University for Nationalities, Nanning 530006, China. xiaojiliu72@126.com 
ZHANG Miao College of Science, Guangxi University for Nationalities, Nanning 530006, China. zhangmiao198658@163.com 
BENITEZ Julio Instituto de Matem\'atica Multidisciplinar,Universitad Polit\'ecnica de Valencia, Valencia 46022, Spain. jbenitez@mat.upv.es 
Hits: 1393
Download times: 19
中文摘要:
      在 $T_{1}T_{2}T_{1}=T_{2}$, $T_{2}T_{1}^{k-1}=T_{1}T_{2}^{k-1}$ 和 $T_{1}T_{2}T_{1}=T_{2}T_{1}$的条件下, 得到k-次幂等矩阵线性组合群逆的表示. 另外, 在$T_{1}T_{2}T_{1}=T_{2}$ 和 $T_{1}^{2}T_{2}=T_{2}$ 的条件下, 计算超广义幂等矩阵线性组合Moore-Penrose 广义逆的表示
英文摘要:
      In this paper, the expressions of the group inverse of the linear combinations of $k$-idempotent matrices under the conditions $T_{1}T_{2}T_{1}=T_{2}$, $T_{2}T_{1}^{k-1}=T_{1}T_{2}^{k-1}$ and $T_{1}T_{2}T_{1}=T_{2}T_{1}$ are given. Moreover. The authors investigate the expressions of the Moore-Penrose generalized inverse of the linear combinations of the hypergeneralized idempotent matrices under the conditions $T_1T_2T_1=T_2$ and $T^2_1T_2=T_2$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.