赵长健.对偶均值积分的Marcus-Lopes不等式[J].数学年刊A辑,2014,35(4):501~510
对偶均值积分的Marcus-Lopes不等式
On the Marcus-Lopes Inequalities for Dual Quermassintegrals
  
DOI:
中文关键词:  凸体, 星体, 均值积分, 对偶均值积分, Brunn-Minkowski理论, 对偶Brunn-Minkowski理论
英文关键词:Convex body, Star body, Quermassintegral, Dual quermassintegral, Brunn-Minkowski theory, Dual Brunn-Minkowski theory
基金项目:国家自然科学基金 (No.11371334)
Author NameAffiliationE-mail
ZHAO Changjian Department of Mathematics, China Jiliang University, Hangzhou 310018, China. chjzhao@163.com 
Hits: 903
Download times: 17
中文摘要:
      Milman曾提出过一个问题: 在混合体积理论, 是否存在Marcus-Lopes型和 Bergstrom 型不等式? 即对${\Bbb R^{n}}$上任意凸体$K$与$L$且$i=0,\cdots,n-1$, 是否成立 $$ \frac{W_{i}(K+L)}{W_{i+1}(K+L)}\geq \frac{W_{i}(K)}{W_{i+1}(K)}+\frac{W_{i}(L)}{W_{i+1}(L)}? $$ 这里 $W_{i}$表示凸体的$i$次均值积分. 当且仅当$i=n-1$ 或$i=n-2$时,这个问题是正确的, 已被证明. 作者考虑了一个对偶问题, 证明了: 若$K$与$L$是${\Bbb R^{n}}$上的星体, $n-2\leq i\leq n-1$且$i\in {\Bbb R}$,则 $$ \frac{\wt{W}_{i}(K\wt{+}L)}{\wt{W}_{i+1}(K\wt{+}L)}\leq \frac{\wt{W}_{i}(K)}{\wt{W}_{i+1}(K)}+\frac{\wt{W}_{i}(L)}{\wt{W}_{i+1}(L)}, $$ 其中 $\wt{W}_{i}$表示星体的$i$次对偶均值积分.
英文摘要:
      The main aim of this paper is a question of Milman about a possible analogue of the Marcus-Lopes inequality and Bergstrom's inequality in the theory of mixed volumes: for which values of $0\leq i\leq n$ is it true that, for every pair of convex bodies $K$ and $L$ in ${\Bbb R^{n}}$ one has $$\frac{W_{i}(K+L)}{W_{i+1}(K+L)}\geq \frac{W_{i}(K)}{W_{i+1}(K)}+\frac{W_{i}(L)}{W_{i+1}(L)}? $$ Here, $W_{i}$ is the $i$-th quermassintegral of a convex body. The answer to this question was proved to be positive if and only if $i=n-1$ or $i=n-2$. In this paper, the author proves an analogous statement for the dual quermassintegrals. If $K$ and $L$ are star bodies in ${\Bbb R^{n}}$ and if $n-2\leq i \leq n-1$, then $$\frac{\wt{W}_{i}(K\wt{+}L)}{\wt{W}_{i+1}(K\wt{+}L)}\leq \frac{\wt{W}_{i}(K)}{\wt{W}_{i+1}(K)}+\frac{\wt{W}_{i}(L)}{\wt{W}_{i+1}(L)}, $$ where $\wt{W}_{i}$ is the $i$-th dual quermassintegral of a star body.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.