王玉玉,王健波.球面稳定同伦群中的$\xi_n$-相关元素的非平凡性[J].数学年刊A辑,2014,35(5):575~582 |
球面稳定同伦群中的$\xi_n$-相关元素的非平凡性 |
The Non-triviality of $\xi_n$-Related Elements in the Stable Homotopy Groups of Sphere |
|
DOI: |
中文关键词: Adams 谱序列, May 谱序列, 球面稳定同伦群,非平凡性 |
英文关键词:Adams spectral sequence, May spectral sequence, Stable homotopy
groups of sphere, Non-triviality |
基金项目:国家自然科学基金(No.11301386, No.11026197, No.11071125, No.11226080, No.11001195),
天津市高校``优秀青年教师资助计划"(No. ZX110QN044),天津师范大学博士基金(No.52XB1011), 天津大学自主创新基金(No.60302036,\ No.60302055)和
北洋学者青年骨干教师计划项目(No.60301016) |
|
Hits: 1038 |
Download times: 15 |
中文摘要: |
利用Adams谱序列与May谱序列, 发掘了球面稳定同伦群中一族$\xi_n$的相关元素.
这里$\xi_n\in\pi_* M$在Adams 谱序列中由$h_0h_n\in \ext_A^{2,p^n q+q}(H^* M,\zz_p)$所表示, 其中$p\geqslant 7,\ n>3,\ q=2(p-1).$ |
英文摘要: |
Using the Adams spectral sequence and the May spectral sequence, the authors detect a $\xi_n$-related family in the stable
homotopy groups of sphere. Here $\xi_n\in\pi_*S$ are represented by $h_0h_n\in \ext
_A^{2,p^n q+q}(\mathbb{Z}_p, \mathbb{Z}_p)$ in the Adams spectral sequence, where $p\geqslant 7,\ n>3,\ q=2(p-1).$ |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|