白永强,裴明,刘震.差分方程拉克斯对的一种构造性方法[J].数学年刊A辑,2014,35(5):583~590
差分方程拉克斯对的一种构造性方法
A Constructive Method for the Lax Pair of Difference Equations
  
DOI:
中文关键词:  非交换微分, 差分方程, 拉克斯对
英文关键词:Noncommutative differential calculus, Difference equation, Lax pair
基金项目:国家自然科学基金 (No.10801045)
Author NameAffiliationE-mail
BAI Yongqiang Institute of Contemporary Mathematics
School of Mathematics and Information Science, Henan University, Kaifeng 475004, China. 
byqiang2005@yeah.net 
PEI Ming School of Mathematics and Information Science, Henan University, Kaifeng 475004, China. pm@henu.edu.cn 
LIU Zhen Department of Mathematics, Zhejiang University of Technology, Hangzhou 310023, China. zhenliu@zjut.edu.cn 
Hits: 973
Download times: 18
中文摘要:
      非交换微分在讨论数学物理中的偏微分方程时起着十分重要的作用.最近, 作者利用一个具体的非交换外微分建立了一种求差分微分方程拉克斯对的方法, 由此检验了该方程的可积性. 本文给出了讨论全差分方程的对应理论. 另外还讨论了 一个格子形变的KdV (LMKdV)方程,并求得了它的拉克斯对.
英文摘要:
      Noncommutative differential calculus plays a fundamental role in discussing partial differential equations in mathematical physics. Recently, the authors have used a concrete noncommutative exterior differential calculus to develop a theory of the Lax pair of differential-difference equations and thus test their integrability. In this paper, a discrete theory is proposed to discuss difference equations. In addition, a lattice modified Korteweg-de Vries (LMKdV for short) is discussed and the corresponding Lax pairs are also given.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.