刘桥.带粗糙初始值向列型液晶流的适定性[J].数学年刊A辑,2014,35(5):591~612
带粗糙初始值向列型液晶流的适定性
Well-Posedness for the Nematic Liquid Crystal Flow with Rough Initial Data
  
DOI:
中文关键词:  向列型液晶流, 适定性, 唯一性, Navier--Stokes 方程组, $Q$-空间
英文关键词:Nematic liquid crystal flow, Well-posedness, Uniqueness, Navier- Stokes equations, Q-space
基金项目:国家自然科学基金 (No.11401202, No.11171357),数学天元基金 (No.11326155) 和湖南省自然科学基金(No.13JJ4043)
Author NameAffiliationE-mail
LIU Qiao College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China. liuqao2005@163.com 
Hits: 1561
Download times: 21
中文摘要:
      考虑了$\mathbb{R}^{n}$上$n\ (n\geq2)$维向列型液晶流 $(u,d)$ 当初值属于$Q_{\alpha}^{-1}(\mathbb{R}^{n},\mathbb{R}^{n})\times Q_{\alpha}(\mathbb{R}^{n},\mathbb{S}^{2})$ (其中 $\alpha\in (0,1)$)时 Cauchy 问题的适定性, 这里的 $Q_{\alpha}(\mathbb{R}^{n})$ 最早由 Essen, Janson, Peng 和 Xiao (见 [Essen M, Janson S, Peng L, Xiao J. $Q$ space of several real variables, {\it Indiana Univ Math J}, 2000, 49:575--615])引入, 是指由 $\mathbb{R}^{n}$ 中满足 \begin{align*} \sup_{I}\Big((l(I))^{2\alpha-n}\int_{I}\int_{I} \frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2\alpha}}\text{d}x\text{d}y\Big)^{\frac{1}{2}}<\infty \end{align*} 的所有可测函数 $f$ 全体所组成的空间. 上式左端在取遍$\mathbb{R}^{n}$中所有以 $l(I)$ 为边长 且边平行于坐标轴的立方体 $I$的全体中取上确界, 而$Q_{\alpha}^{-1}(\mathbb{R}^{n}):=\nabla\cdot Q_{\alpha}(\mathbb{R}^{n})$. 最后证明了解$(u, d)$在类$C([0,T);Q_{\alpha,T}^{-1} (\mathbb{R}^{n}$, $\mathbb{R}^{n}))\cap L^{\infty}_{\rm loc}((0,T);L^{\infty}(\mathbb{R}^{n},\mathbb{R}^{n}))\times C([0,T);Q_{\alpha,T}(\mathbb{R}^{n}, \mathbb{S}^{2})) \cap L^{\infty}_{\rm loc}((0,T); \dot{W}^{1,\infty}(\mathbb{R}^{n},\mathbb{S}^{2}))$ (其中 $0
英文摘要:
      The author investigates the well-posedness of the Cauchy problem of the $n$-dimensional ($n\geq 2$) hydrodynamic flow $(u, d)$ of nematic liquid crystal materials on $\mathbb{R}^{n}$ with the initial data in $Q_{\alpha}^{-1}(\mathbb{R}^{n},\mathbb{R}^{n})\times Q_{\alpha}(\mathbb{R}^{n},\mathbb{S}^{2})$ with $\alpha\in (0,1)$. Here, $Q_{\alpha}(\mathbb{R}^{n})$, introduced by Essen, Janson, Peng and Xiao (see [Essen M, Janson S, Peng L, Xiao J. $Q$ space of several real variables, {\it Indiana Univ Math J}, 2000, 49:575--615]), is the space of all measurable functions $f$ on $\mathbb{R}^{n}$, satisfying \begin{align*} \sup_{I}\Big((l(I))^{2\alpha-n}\int_{I}\int_{I} \frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2\alpha}}\text{d}x\text{d}y\Big)^{\frac{1}{2}}<\infty, \end{align*} where the supremum is taken over all cubes $I$ with the edge length $l(I)$ and the edges parallel to the coordinate axes in $\mathbb{R}^{n}$, and $Q_{\alpha}^{-1}(\mathbb{R}^{n}):=\nabla\cdot Q_{\alpha}(\mathbb{R}^{n})$. %More precisely, we prove the existence %of a global mild solution in %$Q^{-1}_{\alpha}(\mathbb{R}^{n},\mathbb{R}^{n})\times %Q_{\alpha}(\mathbb{R}^{n},\mathbb{S}^{2})$ for small initial data. Moreover, for the nematic liquid crystal flow $(u,d)$, it is shown that the solution is unique in the class $C([0,T);Q_{\alpha,T}^{-1}(\mathbb{R}^{n},\mathbb{R}^{n}))\cap L^{\infty}_{\rm loc}((0,T);L^{\infty}(\mathbb{R}^{n},\mathbb{R}^{n}))\times C([0,T);Q_{\alpha,T}(\mathbb{R}^{n},\mathbb{S}^{2}))\cap L^{\infty}_{\rm loc}((0,T); \linebreak \dot{W}^{1,\infty}(\mathbb{R}^{n},\mathbb{S}^{2}))$ for $0
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.