马瑶,陈良云,林洁.李color代数的$T^*$-扩张[J].数学年刊A辑,2014,35(5):623~638
李color代数的$T^*$-扩张
$T^*$-Extension of Lie Color Algebras
  
DOI:
中文关键词:  $T^*$-扩张, 李color代数, 幂零的, 二次的
英文关键词:$T^*$-extension, Lie color algebra, Nilpotent, Quadratic
基金项目:国家自然科学基金(No.11171055, No.11471090, No.11226054), 中央高校基本科研业务费专项资金(No.12SSXT139), 教育部留学回国人员科研启动基金和吉林省自然科学基金(No.201115006)
Author NameAffiliationE-mail
MA Yao School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China. may703@nenu.edu.cn 
CHEN Liangyun School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China. chenly640@nenu.edu.cn 
LIN Jie Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China. linj022@126.com 
Hits: 1109
Download times: 20
中文摘要:
      介绍了李color代数的$T^*$-扩张的定义, 并证明李color代数的很多性质, 如 幂零性、可解性和可分解性, 都可以提升到它的$T^*$-扩张上. 还证明在特征不等于2的代数闭域上, 有限维幂零二次李color代数$A$等距同构于一个幂零 李color代数$B$的$T^*$-扩张, 并且$B$的幂零长度不超过$A$的一半. 此外, 用上同调的方法研究了李color代数的$T^*$-扩张的等价类.
英文摘要:
      In this paper, the notion of $T^*$-extension of a Lie color algebra is introduced. Many properties of a Lie color algebra can be lifted to its $T^*$-extensions, such as nilpotency, solvability and decomposition. It is proved that every finite-dimensional nilpotent quadratic Lie color algebra $A$ over an algebraically closed field of characteristic different from 2 is isometric to a $T^{*}$-extension of a nilpotent Lie color algebra $B$, and the nilpotent length of $B$ is at most half of that of $A$. Moreover, the equivalence of $T^*$-extensions is investigated from the cohomological point of view.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.