桑波.一类具有1:-4共振奇点的复三次Lotka-Volterra系统的可积性条件[J].数学年刊A辑,2014,35(6):729~740 |
一类具有1:-4共振奇点的复三次Lotka-Volterra系统的可积性条件 |
Integrability Conditions for a Class of Complex Cubic Lotka-Volterra Systems with a1:-4 Resonant Singular Point |
|
DOI: |
中文关键词: 1:-4共振奇点, 可积性, 积分因子, 广义奇点量, 形式首次积分 |
英文关键词:$1:-4$ resonant sigular point, Integrability, Integrating factor, Generalized singular point value, Formal first integral |
基金项目:数学天元基金(No.11226041) |
|
Hits: 3190 |
Download times: 346 |
中文摘要: |
对于一类具有 1:-4共振奇点的复三次Lotka-Volterra系统, 通过前12阶广义奇点量的计算, 给出系统可积的充分条件. 这些条件
通过构造积分因子或形式积分得以证明. |
英文摘要: |
For a class of complex cubic Lotka-Volterra systems with a $1:-4$ resonant singular point,
some sufficient conditions for integrability are obtained through the computations of the first twelve generalized singular point values.
All these conditions are verified by constructing integrating factors or formal first integrals. |
View Full Text View/Add Comment Download reader |
Close |