张学军,范海霞,席利华,李俊锋.$\mathbb{C}^{n}$中$\mu$-Bergman空间的刻画和微分复合算子[J].数学年刊A辑,2014,35(6):741~756
$\mathbb{C}^{n}$中$\mu$-Bergman空间的刻画和微分复合算子
Characterizations and Differentiation Composition Operators of $\mu$-Bergman Space in $\mathbb{C}^n$
  
DOI:
中文关键词:  $\mu$-Bergman空间, 刻画, 微分复合算子, 有界性, 紧性
英文关键词:$\mu$-Bergman space, Characterization, Differentiation composition operator, Boundedness, Compactness
基金项目:湖南省教育厅重点基金(No.10A074, No.12A206), 湖南省重点学科建设项目和湖南师范大学数学与计算机科学学院 高性能计算与随机信息处理省部共建教育部重点实验室
Author NameAffiliationE-mail
ZHANG Xuejun College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China. xuejunttt@263.net 
FAN Haixia College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China.  
XI Lihua College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China.  
LI Junfeng College of Mathematics and Computer Science, Hunan City University, Yiyang 413000, Hunan, China. li_jfeng@sina.com 
Hits: 2773
Download times: 353
中文摘要:
      设$p>0$, $\mu$和$\mu_{1}$是$[0,1)$上的正规函数. 本文首先给出了$\mathbb{C}^{n}$中单位球上$\mu$-Bergman空间$A^{p}(\mu)$的几种等价刻画; 然后 分别刻画了$A^{p}(\mu)$到$A^{p}(\mu_{1})$的 微分复合算子$D_{\varphi}$为有界算子以及紧算子的充要条件, 同时给出了当$p>1$时$D_{\varphi}$为 $A^{p}(\mu)$到$A^{p}(\mu_{1})$上紧算子的一种简捷充分条件和必要条件.
英文摘要:
      Let $p>0$, $\mu$ and $\mu_{1}$ be two normal functions on $[0,1)$. In this paper, a kind of equivalent characterizations of the $\mu$-Bergman space on the unit ball in $\mathbb{C}^{n}$ are given first. Furthermore, the necessary and sufficient conditions that the differentiation composition operator $D_{\varphi}$ is a bounded operator or a compact operator from $A^{p}(\mu)$ to $A^{p}(\mu_{1})$ are given, respectively. At the same time, a simple sufficient condition and the necessary condition that $D_{\varphi}$ is a compact operator from $A^{p}(\mu)$ to $A^{p}(\mu_{1})$ are given.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.