Apr.11 Fri.2025
涂天亮.导数在边界上具有Lipα条件的调和函数插值逼近阶[J].数学年刊A辑,2015,36(1):1~12
导数在边界上具有Lipα条件的调和函数插值逼近阶
Order of Interpolatory Approximation to Harmonic Functions with Lip α on the Boundary
  
DOI:
中文关键词:  调和函数, 调和插值多项式, 一致逼近, 存在性, 唯一性, 稳定性
英文关键词:Harmonic functions, Harmonic interpolatory polynomials, Uniform approximation, Existence, Uniqueness, Stability
基金项目:本文受到河南省自然科学基金 (No.20001110001) 的资助.
Author NameAffiliationE-mail
TU Tianliang Department of Mathematics and Informatics, North China University of Water Resources and Electric Power, zhengzhou 450011, China. tutl@ncwu.edu.cn; mochiwu@zzu.edu.cn 
Hits: 4197
Download times: 6737
中文摘要:
      D是由复平面z中一条Jordan闭曲线$\Ga$围成的单连区域, $z=0\in D$.函数$u(z)$在$D$内调和 且在$\Ga$上$u^{(q)}\in {\rm Lip}\al\ (0<\al<1)$. 基于复插值逼近理论证明了: 存在唯一的调和插值多项式 $u_n^*(z)$, 它与调和函数$u(z)$在$\Ga$的摄动Fej\'{e}r点$\{z_k^*\}_0^{n-1}$上有相同的值, 在$\o D$上一致收敛于$u(z)$, 且收敛是稳定的. 所得结果改进并推广了同类课题中已有的工作.
英文摘要:
      Let $D$ be a simply connected domain in the complex z-plane bounded by a closed Jordan curve $\Ga$, $z=0\in D$, and let the function $u(z)$ be harmonic in $D$ with $u^{(q)}\in {\rm Lip}\al\ (0<\al<1)$ on $\Ga$. Based on the theory of complex approximation by interpolation, it is proved that there exists a unique harmonic interpolation polynomial $u_n^*(z)$ which coincides with $u(z)$ at disturbed Fej\'{e}r points $\{z_k^*\}_0^{n-1}$ on $\Ga$, and uniformly approximates to $u(z)$ on $\o D$. The convergence is stable. The results obtained have improved or extended earlier similar works on this topic.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.