李秀丽,李红艳.当$4q^{5}-5q^{4}-2q+1\leq d \leq 4q^{5}-5q^{4}-q$时$[g_{q}(6,d),6,d]_{q}$码的不存在性[J].数学年刊A辑,2015,36(1):47~58
当$4q^{5}-5q^{4}-2q+1\leq d \leq 4q^{5}-5q^{4}-q$时$[g_{q}(6,d),6,d]_{q}$码的不存在性
Nonexistence of $[g_{q}(6,d),6,d]_{q}$ Codes for $4q^{5}-5q^{4}-2q+1\leq d \leq 4q^{5}-5q^{4}-q$
  
DOI:
中文关键词:  线性码, Griesmer 界, 射影空间, 线性码的扩展
英文关键词:Linear codes, Griesmer bound, Projective spaces, Extension of linear codes
基金项目:本文受到山东省中青年科学家奖励基金(No.BS2011DX011)和山东省科技厅联合专项(No.ZR2013AL011)的资助.
Author NameAffiliationE-mail
Li Xiuli School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266000, Shandong, China. lixiuli2007@aliyun.com 
Li Hongyan College of Electromechanical Engineering, Department of Mathematics, Qingdao University of Science and Technology, Qingdao 266000, Shandong, China. lihongyan@qust.edu.cn 
Hits: 3597
Download times: 6443
中文摘要:
      证明了对于$q\geq17$, 当$4q^{5}-5q^{4}-2q+1\leq d \leq 4q^{5}-5q^{4}-q$时, 不存在达到Griesmer界的 $[n,k,d]_{q}$码. 此结果推广了Cheon 等人在2005年和2008年的非存在性定理.
英文摘要:
      The authors prove that there exist no $[n,k,d]_{q}$ codes attaining the Griesmer bound for $4q^{5}-5q^{4}-2q+1\leq d \leq 4q^{5}-5q^{4}-q$ with $q\geq17$. This result generalizes the nonexistence theorems of Cheon etc. in 2005 and 2008.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.