聂昌雄.共形空间${\mathbb Q}^n_s$中的正则Blaschke拟全脐子流形[J].数学年刊A辑,2015,36(1):59~68
共形空间${\mathbb Q}^n_s$中的正则Blaschke拟全脐子流形
Regular Blaschke Quasi-umbilical Submanifolds in the Conformal Space ${\mathbb Q}^n_s$
  
DOI:
中文关键词:  正则子流形, 共形不变量, Blaschke拟全脐子流形
英文关键词:Regular submanifolds, Conformal invariants, Blaschke quasi-umbilical submanifolds
基金项目:本文受到国家留学基金 (No.[2011]5025) 的资助.
Author NameAffiliationE-mail
NIE Changxiong Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China. chxnie@163.com 
Hits: 3979
Download times: 6282
中文摘要:
      [Nie C X, Wu C X, Regular submanifolds in the conformal space ${\mathbb Q}^n_p$, {\it Chin Ann Math}, 2012, 33B(5):695--714]中研究了共形空间${\mathbb Q}^n_s$中 的正则子流形, 并引入了共形空间${\mathbb Q}^n_s$中的子流形理论. 本文作者将分类共形空间${\mathbb Q}^n_s$中的Blaschke拟全脐子流形, 证明伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形是共形空间中的Blaschke拟全脐子流形; 反之, 共形空间中的Blaschke拟全脐子流形共形等价于伪Riemann空 间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形. 这一结论可看作是共形空间${\mathbb Q}^n_s$中共形迷向子流形 分类定理的推广.
英文摘要:
      In [Nie C X, Wu C X, Regular submanifolds in the conformal space ${\mathbb Q}^n_p$, {\it Chin Ann Math}, 2012, 33B(5):695--714], the authors studied the regular submanifolds in the conformal space ${\mathbb Q}^n_s$ and introduced the submanifold theory in the conformal space ${\mathbb Q}^n_s$. This paper classifies the Blaschke quasi-umbilical submanifolds in the conformal space ${\mathbb Q}^n_s$. It is proved that regular submanifolds in pseudo-Riemann space forms with constant scalar curvature and parallel mean curvature vector field are Blaschke quasi-umbilical submanifolds in the conformal space, and that any Blaschke quasi-umbilical submanifold in the conformal space is conformal equivalent to a regular submanifold with constant scalar curvature and parallel mean curvature vector field in pseudo-Riemann space forms. These results may be regarded as an extension of the classification of the conformal isotropic submanifolds in the conformal space ${\mathbb Q}^n_s$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.