高福根,李晓春.以仿正规算子为参数的初等算子的性质[J].数学年刊A辑,2015,36(1):111~118
以仿正规算子为参数的初等算子的性质
Properties of an Elementary Operator with Paranormal Operators as Parameters
  
DOI:
中文关键词:  仿正规算子, 初等算子, 广义Weyl定理
英文关键词:Paranormal operators, Elementary operator, Generalized Weyl's theorem
基金项目:国家自然科学基金(No.11271112, No.11301155), 河南省高校科研创新团队(No.14IRTS THN023), 河南省教育厅科学技术研究重点项目(No.13B110077), 河南师范大学国家级项目培育基金, 河南师范大学青年基金和河南师范大学博士科研启动费支持课题(No.qd12102)
Author NameAffiliationE-mail
GAO Fugen College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan, China. gaofugen08@126.com 
LI Xiaochun  xiaochun@tom.com 
Hits: 3374
Download times: 6198
中文摘要:
      若对$\forall x\in \mathcal{H}$, $\|Tx\|^{2} \leq \|T^{2}x\|\|x\|$, 则称$T$是仿正规算子. $d_{AB}$表示$\delta_{AB}$或$\triangle_{AB}$, 其中$\delta_{AB}$和$\triangle_{AB}$分别表示Banach空间$B(\mathcal{H})$上 的广义导算子和初等算子, 其定义为$\delta_{AB}X=AX-XB$, $\triangle_{AB}X=AXB-X$, $\forall X \in B(\mathcal{H})$. 若$A$和$B^{\ast}$是仿正规算子, 则可证$d_{AB}$是polaroid算子, $\forall f\in H(\sigma (d_{AB}))$, $f(d_{AB})$满足广义Weyl定理, $f(d_{AB}^{\ast})$满足广义$a$-Weyl定理, 其中$H(\sigma (d_{AB}))$表示在$\sigma (d_{AB})$的某邻域上解析的函数全体.
英文摘要:
      An operator $T$ is called paranormal if $\| Tx\|^{2}\leq \| T^{2}x\| \| x \|$ for all $x\in \mathcal{H}$. Let $d_{AB}$ denote either $\delta_{AB}$ or $\triangle_{AB}$, where $\delta_{AB}$ and $\triangle_{AB}$ denote the generalized derivation and the elementary operator on a Banach space $B(\mathcal{H})$ defined by $\delta_{AB}X=AX-XB$ and $\triangle_{AB}X=AXB-X,\ \forall X \in B(\mathcal{H})$, respectively. If $A$ and $B^{\ast}$ are paranormal operators, it is shown that $d_{AB}$ is polaroid and the generalized Weyl's theorem holds for $f(d_{AB})$, the generalized $a$-Weyl's theorem holds for $f(d_{AB}^{\ast})$ for every $f\in H(\sigma (d_{AB}))$, where $H(\sigma (d_{AB}))$ denotes the set of all analytic functions in a neighborhood of $\sigma (d_{AB})$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.