刘合国,吴佐慧,张继平,徐行忠,廖军.无限循环群被有限生成Abel群的中心扩张[J].数学年刊A辑,2015,36(3):233~246
无限循环群被有限生成Abel群的中心扩张
On Central Extensions of Infinite Cyclic Groups byFinitely Generated Abelian Groups
  
DOI:
中文关键词:  中心扩张, 有限生成Abel群, 中心, 换位子群, 不变量
英文关键词:Central extension, Finitely generated Abelian group, Center, Commutator subgroup, Invariant
基金项目:本文受到湖北省高层次人才工程基金(No.1070-016533)和国家自然科学基金 (No.11131001, No.1137 1124, No.11401186)的资助.
Author NameAffiliationE-mail
LIU Heguo School of Mathematics and Statistics, Hubei University, Wuhan 430062, China. ghliu@hubu.edu.cn 
WU Zuohui School of Mathematics and Statistics, Hubei University, Wuhan 430062, China. zuohuiwoo@163.com 
ZHANG Jiping School of Mathematical Sciences, Peking University, Beijing 100871, China. jzhang@math.pku.edu.cn 
XU Xingzhong School of Mathematics and Statistics, Hubei University, Wuhan 430062, China. xuxingzhong407@126.com 
LIAO Jun Corresponding author. School of Mathematics and Statistics, Hubei University,Wuhan 430062, China. jliao@hubu.edu.cn 
Hits: 912
Download times: 580
中文摘要:
      设$G$是无限循环群被有限生成Abel群的中心扩张, $T$是$G$的中心$\zeta G$的挠子群. 如果$T$的阶与$\zeta G/(G'\oplus T)$的挠子群的阶互素, 那么 群$G$可分解为$G=S\times F\times T$, 其中 $$ S=\left\{\left( \begin{array}{cccccc} 1&d_1\alpha_{1}&d_2\alpha_{2}&\cdots&d_r\alpha_{r}&\alpha_{r+1}\0&1&0&\cdots&0&\alpha_{r+2}\\vdots&\vdots&\vdots& &\vdots&\vdots\0&0&0&\cdots&0&\alpha_{2r}\0&0&0&\cdots&1&\alpha_{2r+1}\0&0&0&\cdots&0&1 \end{array} \right)\left| \begin{aligned} \\\alpha_{j}\in \mathbb{Z} \\~\ \end{aligned} \right. \right\}, $$ 这里$d_i$都是正整数, 满足$d_1\mid d_2\mid \cdots \mid d_r$, $F$是秩为$s$的自由Abel群, $T$是有限Abel群, $T=\mathbb{Z}_{e_1}\oplus \mathbb{Z}_{e_2}\oplus\cdots\oplus\mathbb{Z}_{e_t}$, $e_1>1$, 满足$e_1\mid e_2\mid \cdots \mid e_t$, 并且$(d_1, e_t)=1$. 进一步, $(d_1, d_2,\cdots , d_r; s;e_1,e_2,\cdots , e_t)$ 是群$G$的同构不变量, 即若群$H$也是无限循环群被有限生成Abel群的中心扩张, $T_{H}$是$\zeta H$的挠子群. 如果$T_{H}$的阶与$\zeta H/(H'\oplus T_{H})$的挠子群的阶互素, 那么$G$同构于$H$的充要条件是它们有相同的不变量. 显然, 这个结果涵盖了有限生成Abel群的结构定理.
英文摘要:
      Suppose that G is a central extension of an infinite cyclic group by a finitely generated Abelian group, and T is the torsion subgroup of the center G of G. If the order of T is prime to the order of the torsion subgroup of G/(G′ ⊕T ), then G has a decomposition G = S × F × T , where S = ?????????? ????????? ? ???????? 1 d1 1 d2 2 · · · dr r r+1 0 1 0 · · · 0 r+2 ... ... ... ... ... 0 0 0 · · · 0 2r 0 0 0 · · · 1 2 r+1 0 0 0 · · · 0 1 ? ???????? j ∈ Z ?????????? ????????? , di are positive integers satisfying d1 | d2 | · · · | dr, F is a free Abelian group with rank s, and T is a finite Abelian group such that T = Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zetwith e1 > 1, e1 | e2 | · · · | et, and (d1, et) = 1. Moreover, (d1, d2, · · · , dr; s; e1, e2, · · · , et) is an isomorphic invariant of G, that is to say, if H is also a central extension of an infinite cyclic group by a finitely generated Abelian group and the order of the torsion subgroup TH of H is prime to that of the torsion subgroup of H/(H′ ⊕ TH), then G is isomorphic to H if and only if they have the same invariants. Obviously, this result covers the fundamental theorem for finitely generated Abelian groups
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.