汪璇,段奋霞,马群,杨光.带衰退记忆的经典反应扩散方程的强全局吸引子*[J].数学年刊A辑,2015,36(3):265~276
带衰退记忆的经典反应扩散方程的强全局吸引子*
Strong Global Attractors for the Classical ReactionDiffusion Equations with Fading Memory
  
DOI:
中文关键词:  经典反应扩散方程, 强全局吸引子, 任意阶多项式增长, 衰退记忆
英文关键词:Classical reaction diffusion equations, Strong global attractor, Polynomial growth of arbitrary order, Fading memory
基金项目:本文受到甘肃省自然科学基金(No.\,145RJZA112)和国家自然科学基金 (No.11361053, No.11201204, No.11261053) 的资助.
Author NameAffiliationE-mail
WANG Xuan College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China. wangxuan@nwnu.edu.cn 
DUAN Fenxia College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China. 980866580@qq.com 
MA Qun College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China. 1120354557@qq.com 
YANG Guang School of Economics and Management, Lanzhou University of Technology, Lanzhou 730050, China. 305683617@qq.com 
Hits: 895
Download times: 727
中文摘要:
      当任意阶多项式增长的非线性项为耗散, 且外力项仅属于$L^2(\Omega)$时, 研究了带衰退记忆的经典反应扩散方程的解在强拓扑空间$H_0^1(\Omega)$$\times L_\mu^2(\mathbb R^+; D(A))$的长时间行为. 应用抽象函数理论、半群理论以及 新的估计技巧, 在拓扑空间$H_0^1(\Omega)\times L_\mu^2(\mathbb R^+; D(A))$上, 验证了强解半群的渐近紧性并且证明了强全局吸引子的存在性.
英文摘要:
      This paper deals with the long-time behavior of solutions for the classical re- action diffusion equations with fading memory in the strong topological space H1 0 ( ) × L2 μ(R+;D(A)), where the nonlinearity with polynomial growth of arbitrary order is dissipa- tive, and the forcing term only belongs to L2( ). Applying the abstract function theory, the semigroup theory and some new estimate techniques, the authors prove the asymptotic com- pactness of solutions and obtain the existence of global attractor in the strong topological space H1 0 ( )×L2 μ(R+;D(A)).
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.