李秀仙,靳全勤,安慧辉.四元数辛李代数MAD子代数的共轭性[J].数学年刊A辑,2015,36(3):335~344 |
四元数辛李代数MAD子代数的共轭性 |
Conjugacy of the MAD Subalgebras for Symplectic LieAlgebras over the Quaternions |
|
DOI: |
中文关键词: 四元数, 辛李代数, MAD子代数, 共轭 |
英文关键词:Quaternions, Symplectic Lie algebras, MAD subalgebras, Conjugate |
基金项目:本文受到国家自然科学基金(No.11071187)和天津商业大学青年基金 (No.140112)的资助. |
Author Name | Affiliation | E-mail | LI XiuxianJIN | College of Science, Tianjin University of Commerce, Tianjin 300134, China. | lxxcaptain@126.com | Quanqin | Corresponding author. Department of Mathematics, Tongji University, Shang-
hai 200092, China. | qqjin@tongji.edu.cn | AN Huihui | School of Mathematics, Liaoning Normal University, Dalian 116069, Liaoning,
China. | Finsler@126.com |
|
Hits: 1095 |
Download times: 955 |
中文摘要: |
利用四元数理论, 证明了四元数体上辛李代数为实半单李代数, 其极大可交换ad-\!\!可对角化(简称MAD)子代数是相互共轭的. |
英文摘要: |
Using the theory of quaternion matrices, the authors prove that the symplectic
Lie algebras over the quaternions are real semisimple Lie algebras, and their maximal abelian
ad-diagonalizable (MAD for short) subalgebras are all conjugate. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|