李秀仙,靳全勤,安慧辉.四元数辛李代数MAD子代数的共轭性[J].数学年刊A辑,2015,36(3):335~344
四元数辛李代数MAD子代数的共轭性
Conjugacy of the MAD Subalgebras for Symplectic LieAlgebras over the Quaternions
  
DOI:
中文关键词:  四元数, 辛李代数, MAD子代数, 共轭
英文关键词:Quaternions, Symplectic Lie algebras, MAD subalgebras, Conjugate
基金项目:本文受到国家自然科学基金(No.11071187)和天津商业大学青年基金 (No.140112)的资助.
Author NameAffiliationE-mail
LI XiuxianJIN College of Science, Tianjin University of Commerce, Tianjin 300134, China. lxxcaptain@126.com 
Quanqin Corresponding author. Department of Mathematics, Tongji University, Shang- hai 200092, China. qqjin@tongji.edu.cn 
AN Huihui School of Mathematics, Liaoning Normal University, Dalian 116069, Liaoning, China. Finsler@126.com 
Hits: 1095
Download times: 955
中文摘要:
      利用四元数理论, 证明了四元数体上辛李代数为实半单李代数, 其极大可交换ad-\!\!可对角化(简称MAD)子代数是相互共轭的.
英文摘要:
      Using the theory of quaternion matrices, the authors prove that the symplectic Lie algebras over the quaternions are real semisimple Lie algebras, and their maximal abelian ad-diagonalizable (MAD for short) subalgebras are all conjugate.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.