刘见礼,朱磊.一维可压缩Euler方程组的两个模型*[J].数学年刊A辑,2015,36(4):345~354
一维可压缩Euler方程组的两个模型*
Two Models of 1-D Compressible Euler Equations
  
DOI:
中文关键词:  可压缩Euler方程组, 经典解, Cauchy~问题
英文关键词:Compressible Euler equations, Classical solutions, Cauchy problem
基金项目:本文受到国家自然科学基金(No.11401367)和教育部博士点基金(No.20133108120002)的资助.
Author NameAffiliationE-mail
LIU Jianli Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China. jlliu@shu.edu.cn; zhuleilf@163.com 
ZHU Lei   
Hits: 1294
Download times: 947
中文摘要:
      作者考察了一维可压缩~Euler~方程组的两个模型. 利用特征分解和~Gronwall~不等式, 首先得到具有几何结构 且绝热指数 $\gamma =3$ 的一维可压缩~Euler~方程组 $L^\infty$ 模的一致有界性. 进一步, 考虑当绝热指数 $\gamma = -1$ 时, 一维非等熵可压缩~Euler~方程组的~Cauchy~问题. 在适当的假设下, 得到该系统的整体经典解.
英文摘要:
      This paper deals with two models of 1-D compressible Euler equations. Firstly, the authors give 1-D compressible Euler equations with geometrical structure and adiabatic index = 3, and get a uniform L∞ bound of solutions. Secondly, the authors consider the Cauchy problem for the 1-D Chaplygin gas in nonisentropic case, when the adiabatic index is = ?1. Under appropriate assumptions on initial data, the global existence of classical solutions with uniform bound is obtained.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.