陈方维,杨丛丽,罗淼.Orlicz Sylvester Busemann 型函数的极值研究[J].数学年刊A辑,2015,36(4):439~450
Orlicz Sylvester Busemann 型函数的极值研究
On Extrema of the Orlicz Sylvester Busemann-TypeFunctions
  
DOI:
中文关键词:  Orlicz中心体, Sylvester型函数, 平行弦运动
英文关键词:Orlicz centroid body, Sylvester-type function, Parallel chord movement
基金项目:本文受到国家自然科学基金 (No.11161007, No.11101099, No.11561012), 中国科学院西部之光人才项目, 贵州省科学技术(联合)基金 (No.[2012] 2273, No.[2014] 2044, No.[2011] 16), 贵州省留学人员择优项目和贵州师范大学博士基金的资助.
Author NameAffiliationE-mail
CHEN Fangwei Department of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China. cfw-yy@126.com 
YANG Congli School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China. yangcongli@gznu.edu.cn; 
LUO Miao School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China. lm975318@163.com 
Hits: 661
Download times: 741
中文摘要:
      研究了两个Orlicz Busemann型函数 $A(K;\phi)$和 $I(K;\phi;m)$, 建立了 $A(K_t;\phi)$和$I(K_t;\phi;m)$的最小值. 特别地, 在二维平面的情况下, 给出了它们的最大值.
英文摘要:
      In this paper, two new Orlicz Busemann-type functions A(K; ) and I(K; ;m) are introduced. The minimum of A(Kt; ) and I(Kt; ;m) are obtained. Especially, in the two-dimensional case, the maximum of A(Kt; ) and I(Kt; ;m) are established.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.