宋秀翠,李利平.正则Dirichlet子空间与Mosco收敛性[J].数学年刊A辑,2016,37(1):1~14
正则Dirichlet子空间与Mosco收敛性
Regular Dirichlet Subspaces and Mosco Convergence
Received:April 07, 2015  Revised:May 14, 2015
DOI:
中文关键词:  Dirichlet型, 正则子空间, Mosco收敛, 极小扩散过程
英文关键词:Dirichlet forms, Regular subspaces, Mosco convergence, Minimal diffusion
基金项目:
Author NameAffiliation
SONG Xiucui School of Mathematical Sciences, Fudan University, Shanghai 200433, China 
LI Liping Corresponding author. School of Mathematical , Fudan University, Shanghai 200433, China. 
Hits: 1869
Download times: 23
中文摘要:
      讨论了一维不可约强局部Dirichlet型的正则子空间的Mosco收敛性. 如果正则子空间的特征集是收敛的, 那么相应的正则子空间在Mosco意义下也是收敛的. 最后, 用一些具体的例子说明了Mosco收敛不能保持Dirichlet型整体特性的稳定.
英文摘要:
      In this paper, the authors explore the Mosco convergence on regular subspaces of one-dimensional irreducible and strongly local Dirichlet forms. It is found that if the characteristic sets of regular subspaces are convergent, then their associated regular subspaces are also convergent in the sense of Mosco. Finally, some examples illustrate that the Mosco convergence does not preserve any global properties of the Dirichlet forms.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.