范水平,陈宗煊.一类二阶线性微分方程解的增长性[J].数学年刊A辑,2016,37(1):31~40
一类二阶线性微分方程解的增长性
On the Growth of Solutions to Some Second Order Linear Differential Equations
Received:January 10, 2015  Revised:May 08, 2015
DOI:
中文关键词:  微分方程, 整函数, 超级
英文关键词:Differential equation, Entire function, Hyper order
基金项目:本文受到国家自然科学基金(No.11171119)和广东省自然科学基金项目(No.2014A030313422)的资助
Author NameAffiliation
FAN Shuiping School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China 
CHEN Zongxuan Corresponding author. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China. 
Hits: 1750
Download times: 22
中文摘要:
      本文研究一类二阶齐次线性微分方程$$f''+A_{1 (z)\rme^{P(z) f'+A_{0 (z)\rme^{Q(z) f=0$$解的增长性, 其中$P(z)=az^{n $, $Q(z)=bz^{n $, $ab\neq{0 $, $a=cb~(c>1)$, $A_{j (z)\ (j=0, 1)$是非零多项式, 证明了该方程的每个非零解满足$\sigma(f)=\infty$并且$\sigma_2(f)=n$.
英文摘要:
      The authors investigate the growth of solutions to some second-order differential equations \begin{align*} f''+A_{1}(z)\rme^{P(z)}f'+A_{0}(z)\rme^{Q(z)}f=0, \end{align*} where $P(z)=az^{n}$, $Q(z)=bz^{n}$, $ab\neq{0}$, $a=cb~(c>1)$, and $A_{j}(z)\ (j=0, 1)$ are non-zero polynomials. It is obtained that every non-zero solution $f$ of the above equation satisfies $\sigma(f)=\infty$ and $\sigma_{2}(f)=n$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.