李三华.与分担全纯函数相关的正规族[J].数学年刊A辑,2016,37(1):89~96
与分担全纯函数相关的正规族
Normal Families and Shared Value of Holomorphic Function
Received:October 22, 2013  Revised:March 05, 2015
DOI:
中文关键词:  亚纯函数, 零点, 正规族
英文关键词:Meromorphic function, Zero point, Normality
基金项目:本文受到吉安市科技支撑项目 (No.[2015]10号13) 的资助
Author NameAffiliation
LI Sanhua College of Mathematical and Physical Sciences, Jinggangshan University, Jian 343009, Jiangxi, China. 
Hits: 1703
Download times: 20
中文摘要:
      设 $\F$是 在区域 $D$ 内的一族亚纯函数, 其零点重级至少为 $k$, $k$ 是一个正整数, \!\!$a(z)\ (\not\equiv 0)$ 在区域 $D$ 内全纯. 若对于任意的 $f \in \F$, 有 (1) $f(z)$ 与 $a(z)$ 没有公共的零点;\!(2) $f(z) = 0 \Leftrightarrow f^{(k)}(z) = a(z) \Rightarrow 0 < |f^{(k+1)}(z) - a'(z)| < |a(z)|$, 则 $\F$ 在 $D$ 内正规.
英文摘要:
      Let $\F$ be a family of meromorphic functions in a domain $D$, all of whose zeros have multiplicity at least $k$ with $k$ being a positive integer, and $a(z)\ (\not\equiv 0)$ be a holomorphic function in $D$. If, for each $f \in \F$, (1) $f(z)$ and $a(z)$ have no common zeros; (2) $f(z) = 0 \Leftrightarrow f^{(k)}(z) = a(z) \Rightarrow 0 < |f^{(k+1)}(z) - a'(z)| < |a(z)|$, then $\F$ is normal in $D$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.