郑秀敏,吴顺周.有限级超越整函数的差分多项式的值分布[J].数学年刊A辑,2016,37(2):115~126
有限级超越整函数的差分多项式的值分布
Value Distribution of Difference Polynomials of Transcendental Entire Functions of Finite Order
Received:May 30, 2015  Revised:September 06, 2015
DOI:
中文关键词:  差分多项式, 整函数, 值分布
英文关键词:Difference polynomial, Entire function, Value distribution
基金项目:本文受到国家自然科学基金(No.11301233, No.11171119), 江西省自然科学基金(No.20151BAB201004) 和江西省教育厅青年科学基金(No.GJJ14271)的资助
Author NameAffiliation
ZHENG Xiumin Corresponding author. School of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China. & E-mail: zhengxiumin2008@sina.com 
WU Shunzhou School of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China. E-mail: wu718281828@163.com 
Hits: 2334
Download times: 626
中文摘要:
      研究了差分多项式$$H(z) = P(f)\sum\limits_{i=1}^ka_if(z+c_i) $$ 的值分布, 其中$f$是有限级超越整函数, $P(f)$是$f$的多项式, $k\geq2$,\ \ $c_i\ (i=1,\cdots,k)$是互不相同的常数, $a_i\ (i=1,\cdots, k)$是非零常数. 得到了 $H(z)-a$和$H(z)-\alpha(z)$的零点的个数的估计, 其中$a\in\mathbb{C}$且$\alpha(z)\ (\not\equiv0)$为小函数. 讨论了$H(z)$的非零有限Borel例外值的不存在性.
英文摘要:
      This paper deals with the value distribution of the difference polynomial $$ H(z) = P(f)\sum\limits_{i=1}^ka_if(z+c_i), $$ where $f$ is a transcendental entire function of finite order, $P(f)$ is a polynomial of $f$, $k\geq2,\ c_i\ (i=1,\cdots,k)$ are distinct constants, and $a_i\ (i=1,\cdots,k)$ are non-zero constants. The authors estimate the number of the zeros of $H(z)-a$ and $H(z)-\alpha(z)$, where $a\in\mathbb{C}$ and $\alpha(z)\ (\not\equiv0)$ is a small function, and discuss the non-existence of the non-zero finite Borel exceptional value of $H(z)$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.