徐庆华,刘太顺.关于全纯映照模的Schwarz引理一点注记[J].数学年刊A辑,2016,37(2):147~154
关于全纯映照模的Schwarz引理一点注记
A Note on a Schwarz Lemma for the Modulus of Holomorphic Mappings
Received:January 06, 2015  Revised:June 15, 2015
DOI:
中文关键词:  Schwarz 引理, $n$阶零点, 全纯映照
英文关键词:Schwarz lemma, Zero of order $n$, Holomorphic mappings
基金项目:本文受到国家自然科学基金 (No.11561030, No.11261022, No.11471111)和江西省自然科学基金(No.20152ABC20002)的资助.
Author NameAffiliation
XU Qinghua Corresponding author. College of Mathematics and Information Science, Jiangxi,& Normal University, Nanchang 330022, China.E-mail: xuqh@mail.ustc.edu.cn 
LIU Taishun Department of Mathematics, Huzhou University, Huzhou 313000, Zhejiang, China. E-mail: lts@ustc.edu.cn 
Hits: 1628
Download times: 662
中文摘要:
      记$\mathbb{D}\subset \mathbb{C}$ 为单位圆盘, $\mathbb{B}^k\subset \mathbb{C}^k$ 为开欧氏单位球, $\Omega$ 是$\mathbb{C}^k$ (或 $\mathbb{C}$) 中的域. 记$H_n(\mathbb{D},\Omega)$为满足一定条件的全纯映照族(或函数族)的全体. 作者证明了若 $f\in H_n(\mathbb{D}, \mathbb{D})$, 则 \begin{align*} |f'(z)|\leq \frac{n|z|^{n-1}}{1-|z|^{2n}}(1-|f(z)|^2),\quad z\in \mathbb{D}. \end{align*} 同时, 对$H_n(\mathbb{D}, \mathbb{B}^k)$中映照的模也得到类似的结果. 该结论推广了Pavlovi\'{c}的相应结果.
英文摘要:
      Let $\mathbb{D}$ be the unit disk in $\mathbb{C}$, $\mathbb{B}^k$ be the Euclidean unit ball in $\mathbb{C}^k$, $\Omega$ is a domain in $\mathbb{C}^k$ (or $\mathbb{C}$). Let $H_n(\mathbb{D}, \Omega)$ be the set of all holomorphic mappings $f$ from $\mathbb{D}$ into $\Omega$ which satisfies a certain condition. In this paper, it is proved that if $f\in H_n(\mathbb{D}, \mathbb{D})$, then \begin{align*} |f'(z)|\leq \frac{n|z|^{n-1}}{1-|z|^{2n}}(1-|f(z)|^2),\quad z\in \mathbb{D}. \end{align*} Meanwhile, we obtain a similar result for the modulus of mappings in $H_n(\mathbb{D}, \mathbb{B}^k)$. The result generalizes the corresponding result obtained earlier by Pavlovi\'{c}.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.