邓炳茂,刘 丹,杨德贵.涉及分担函数的正规定则[J].数学年刊A辑,2016,37(3):261~266
涉及分担函数的正规定则
Normality Concerning Shared Functions
Received:April 12, 2015  Revised:September 20, 2015
DOI:
中文关键词:  亚纯函数, 分担函数, 正规族
英文关键词:Meromorphic functions, Shared functions, Normal families
基金项目:本文受到国家自然科学基金 (No.11371149) 的资助.
Author NameAffiliation
DENG Bingmao Institute of Applied Mathematics, South China Agricultural University, Guangzhou 510642, China. 
LIU Dan Institute of Applied Mathematics, South China Agricultural University, Guangzhou 510642, China. 
YANG Degui Corresponding author. Institute of Applied Mathematics, South China Agricultural University, Guangzhou 510642, China. 
Hits: 1312
Download times: 580
中文摘要:
      设$k$为正整数, $M$为正数; $\mathcal{F}$为区域$D$内的亚纯函数族, 且其零点重级至少为$k$; $h$为$D$内的亚纯函数$(h(z)\not\equiv 0, \infty)$, 且$h(z)$的极点重级至多为$k$. 若对任意给定的函数$f \in \mathcal{F}$, $f$与$f^{(k)}$分担$0$, 且$f^{(k)}(z)-h(z)=0\Rightarrow |f(z)|\geq M$, 则$\mathcal{F}$在$D$内正规.
英文摘要:
      Let $k$ be a positive integer, $M$ a positive number, $\mathcal{F}$ a family of meromorphic functions in a domain $D$, whose zeros are of mulitiplity at least $k$, and $h$ a meromorphic function in $D \ (h(z)\not\equiv 0, \infty)$ and all poles of $h(z)$ have multiplicity at most $k$. If for each function $f\in \mathcal{F}$, $f$ and $f^{(k)}$ share 0, and $f^{(k)}(z)-h(z)=0\Rightarrow |f(z)|\geq M$, then $\mathcal{F}$ is normal in $D$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.