李雅南,高寿兰,刘 东.李代数$W(2,2)$上的Poisson结构[J].数学年刊A辑,2016,37(3):267~272
李代数$W(2,2)$上的Poisson结构
Poisson Structure on the Lie Algebra $W(2,2)$
Received:February 06, 2015  Revised:September 10, 2015
DOI:
中文关键词:  李代数W(2,2), Poisson代数, Leibniz 法则, Virasoro 代数
英文关键词:
基金项目:本文受到国家自然科学基金 (No.11371134, No.11201141) 和浙江省自然科学基金项目(No.LZ14A010001, No.LQ12A01005, No.LY16A010016)的资助.
Author NameAffiliation
LI Yanan Department of Mathematics, Huzhou University, Huzhou 313000, Zhejiang, China. 
GAO Shoulan Department of Mathematics, Huzhou University, Huzhou 313000, Zhejiang, China. 
LIU Dong Corresponding author. Department of Mathematics, Huzhou University, Huzhou 313000, Zhejiang, China. 
Hits: 1323
Download times: 527
中文摘要:
      Poisson代数是指同时具有代数结构和李代数结构的一类代数, 其乘法和李代数乘法满足Leibniz法则. 李代数$W(2,2)$在权为2的向量生成的顶点算子代数的分类中起着重要作用. 文章主要确定了李代数$W(2,2)$上的Poisson结构, 并得到了Virasoro代数上一般的非结合的Poisson结构, 改进了文[姚裕丰. Witt代数和Virasoro代数上的Poisson代数结构 [J]. {\kaishu 数学年刊}, 2013, 34A(1):111--128] 的部分结果.
英文摘要:
      Poisson algebras are algebras with an algebra structure and a Lie algebra structure, both of which satisfy the Leibniz law. The Lie algebra $W(2,2)$ plays a key role in classification of vertex operator algebras generated by weight $2$ vectors. The authors mainly determine the Poisson structure on $W(2,2)$ and the Poisson structure on the Virasoro algebra, which partially improve results in [Yao Y F. Poisson algebra structures on the Witt algebra and the Virasoro algebras [J]. {\it Chinese Ann Math}, 2013, 34A(1):111--128].
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.