王晓明.关于Witt代数基本子代数的一点注记[J].数学年刊A辑,2016,37(4):397~404 |
关于Witt代数基本子代数的一点注记 |
A Note on Elementary Subalgebras of the Witt Algebra |
Received:January 19, 2015 Revised:October 08, 2015 |
DOI: |
中文关键词: Witt 代数, 基本子代数, 簇, 维数 |
英文关键词:Witt algebra, Elementary subalgebra, Variety,
Dimension |
基金项目:本文受到国家自然科学基金(No.11501359, No.11271014) 的资助. |
|
Hits: 5921 |
Download times: 932 |
中文摘要: |
设$\mathfrak{g}=W_1$是特征$p>3$的代数闭域$k$上的Witt代数. 本文确定了$\mathfrak{g}$的极大基本子代数. 进一步具体给出了最大维数的
基本子代数的$G$共轭类, 这里$G$是$\mathfrak{g}$的自同构群. 从而证明了最大维数为$\frac{p-1}{2}$的基本子代数射影簇
${\mathbb{E}}\big(\frac{p-1}{2}, \mathfrak{g}\big)$是不可约的且是一维的. 更进一步, 证明了${\mathbb{E}}(1,\mathfrak{g})$是不可约的, 具有维数$p-2$, 而${\mathbb{E}}(2,\mathfrak{g})$是等维的, 共有
$\frac{p-3}{2}$个不可约分支, 且每个不可约分支的维数是$p-4$. 而当 $3\leq r\leq \frac{p-3}{2}$时, ${\mathbb{E}}(r,\mathfrak{g})$是可约的. 给出了
${\mathbb{E}}(r,\mathfrak{g})$ \big($3\leq r\leq \frac{p-3}{2}$\big) 维数的一个下界. |
英文摘要: |
Let $\mathfrak{g}=W_1$ be the Witt algebra over an algebraically closed
field $k$ of characteristic $p>3$. Maximal elementary subalgebras of
$\mathfrak{g}$ are determined. Moreover, $G$ conjugacy classes of elementary
subalgebras of maximal dimension under the automorphism group of
$\mathfrak{g}$ are precisely given. As a consequence, the projective variety
${\mathbb{E}}\big(\frac{p-1}{2}, \mathfrak{g}\big)$ of elementary subalgebras of
maximal dimension $\frac{p-1}{2}$ is shown to be irreducible and
one-dimensional. Moreover, we show that ${\mathbb{E}}(1,\mathfrak{g})$ is
irreducible and has dimension $p-2$, ${\mathbb{E}}(2,\mathfrak{g})$ is
equidimensional and has $\frac{p-3}{2}$ irreducible components with
the same dimension $p-4$. While ${\mathbb{E}}(r,\mathfrak{g})$ is reducible
for $3\leq r\leq \frac{p-3}{2}$. A lower bound for the dimension of
${\mathbb{E}}(r,\mathfrak{g})$ \big($3\leq r\leq \frac{p-3}{2}$\big) is given. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|