张健,唐先华,张文.一类非线性Maxwell-Dirac系统的驻波解[J].数学年刊A辑,2017,38(1):001~12
一类非线性Maxwell-Dirac系统的驻波解
Stationary Solutions for a Class of Nonlinear Maxwell-Dirac System
Received:May 24, 2016  Revised:October 15, 2016
DOI:10.16205/j.cnki.cama.2017.0001
中文关键词:  Maxwell-Dirac system, Stationary solutions, Strongly indefinite functionals, Variational method
英文关键词:Maxwell-Dirac system, Stationary solutions, Strongly indefinite functionals, Variational method
基金项目:本文受到国家自然科学基金(No.11601145,No.11571370,No.11471137,No.61472136) 和湖南商学院青年教师创新驱动计划(No.16QD008)的资助.
Author NameAffiliationE-mail
ZHANG Jian School of Mathematics and Statistics, Hunan University of Commerce,Changsha 410205, China. zhangjian433130@163.com 
TANG Xianhua School of Mathematics and Statistics, Central South University,Changsha 410083, China. tangxh@mail.csu.edu.cn 
ZHANG Wen School of Mathematics and Statistics, Hunan University of Commerce,Changsha 410205, China. zwmath2011@163.com 
Hits: 628
Download times: 599
中文摘要:
      对如下非线性Maxwell-Dirac系统 \begin{align*} \left\{\!\!\! \begin{array}{ll} \sum\limits^{3}_{k=1}\alpha_{k}(-\rmi \partial_{k}+K(x)A_{k})u + a\beta u + M(x)u-K(x)A_{0}u =G_{u}(x,u),\-\Delta A_{0}=4\pi K(x)|u|^{2},\-\Delta A_{k}=4\pi K(x)(\alpha_{k}u)\ov{u},\quad k=1,2,3 \end{array} \right. \end{align*} 进行了研究, 其中$x\in \mathbb{R}^{3}$. 由于\,Dirac\,算子是上方和下方无界, 相应的能量泛函是强不定的. 假设非线性项满足次临界超二次的增长条件, 运用强不定泛函的广义环绕定理, 证明了系统驻波解的存在性.
英文摘要:
      This paper is concerned with the following Maxwell-Dirac system \begin{align*} \left\{\!\!\! \begin{array}{ll} \sum\limits^{3}_{k=1}\alpha_{k}(-\rmi \partial_{k}+K(x)A_{k})u + a\beta u + M(x)u-K(x)A_{0}u =G_{u}(x,u),\\[2mm] -\Delta A_{0}=4\pi K(x)|u|^{2},\-\Delta A_{k}=4\pi K(x)(\alpha_{k}u)\ov{u},\quad k=1,2,3 \\end{array} \right. \end{align*} for $x\in \mathbb{R}^{3}$. The Dirac operator is unbounded from below and above, so the associated energy functional is strongly indefinite.\;By applying a generalized linking theorem for strongly indefinite functionals, the authors establish the existence of stationary solutions for superquadratic and subcritical nonlinearity.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.