吴清艳,陆善镇,傅尊伟.p-进中心函数空间及奇异积分算子[J].数学年刊A辑,2017,38(1):073~90 |
p-进中心函数空间及奇异积分算子 |
p-Adic Central Function Spaces and Singular Integral Operators |
Received:March 04, 2015 Revised:April 26, 2016 |
DOI:10.16205/j.cnki.cama.2017.0007 |
中文关键词: $p$-Adic $lambda$-central BMO space, $p$-Adic centralMorrey space, Singular integral operator |
英文关键词:$p$-Adic $lambda$-central BMO space, $p$-Adic centralMorrey space, Singular integral operator |
基金项目:本文受到国家自然科学基金(No.11271175,No.11301248,No.11671185)的资助. |
Author Name | Affiliation | E-mail | WU Qingyan | Department of Mathematics, Linyi University, Linyi 276005, Shandong, China. | wuqingyan@lyu.edu.cn | LU Shanzhen | School of Mathematical Sciences, Beijing Normal University,Beijing 100875, China. | lusz@bnu.edu.cn | FU Zunwei | Corresponding author. Department of Mathematics, Linyi University,Linyi 276005, Shandong, China. | zwfu@mail.bnu.edu.cn |
|
Hits: 696 |
Download times: 604 |
中文摘要: |
引入了几类$p$-\!\!进中心函数空间, 包括$p$-\!\!进$A^q$和 $B^q$空间、$p$-\!\!进$\lambda$-\!\!中心BMO空间 以及$p$-\!\!进中心
Morrey空间, 得到了$p$-\!\!进$A^q$空间与 $B^q$ 空间的对偶性、$p$-\!\!进$\lambda$-\!\!中心BMO空间和中心Morrey空间的特征, 研究了这些空间与加权
$p$-\!\!进 Lebesgue 空间之间的关系. 另外, 还建立了一类奇异积分算子在$p$-\!\!进中心Morrey空间中的有界性, 更进一步, 得到了这类算子交换子
在$p$-\!\!进中心Morrey空间中的$\lambda$-\!\!中心BMO估计. |
英文摘要: |
In this paper, the authors introduce several $p$-adic central function spaces including $p$-adic $A^q$ and $B^q$ spaces,
$p$-adic $\lambda$-central BMO spaces and $p$-adic central
Morrey spaces. The authors get the duality of $p$-adic $A^q$ and $B^q$ spaces, the characterization of $p$-adic $\lambda$-central BMO spaces and central
Morrey spaces, and study the
relationship among these spaces and $p$-adic Lebesgue spaces with weights. In addition, the authors establish the boundedness of
a class of singular integral operators on $p$-adic central
Morrey spaces. Moreover, the $\lambda$-central BMO estimates for commutators of these
singular integral operators on $p$-adic central
Morrey spaces are obtained. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|