梁永顺,张琦,姚奎.分形插值函数的分数阶微积分的分形维数[J].数学年刊A辑,2017,38(1):0117~124
分形插值函数的分数阶微积分的分形维数
Fractal Dimension of Fractional Calculus of Certain Interpolation Functions
Received:September 04, 2013  Revised:June 07, 2016
DOI:10.16205/j.cnki.cama.2017.0010
中文关键词:  Fractal dimension, Riemann-Liouville fractional calculus, Linear fractal interpolation function
英文关键词:Fractal dimension, Riemann-Liouville fractional calculus, Linear fractal interpolation function
基金项目:本文受到国家自然科学基金(No.11201230)的资助.
Author NameAffiliationE-mail
LIANG Yongshun Corresponding author. Institute of Science, Nanjing University of Science and Technology,Nanjing 210014, China. liangyongshun@tom.com 
ZHANG Qi Faculty of Science, Nanjing University of Aeronautics and Astronautics,Nanjing 210094, China. zhangqinju@nuaa.edu.cn 
YAO Kui Faculty of Science, PLA University of Science and Technology,Nanjing 210093, China. yaokuinju@gmail.com 
Hits: 884
Download times: 661
中文摘要:
      证明了线性分形插值函数的Riemann-Liouville分数阶微积分仍然是线性 分形插值函数. 在基于线性分形插值函数有关讨论的基础上, 证明了线性分形插值函数的Box维数与Riemann-Liouville分数阶微积分 的阶之间成立着线性关系. 文中给出的例子的图像和数值结果更进一步说明了这个结论.
英文摘要:
      Riemann-Liouville fractional calculus of a linear fractal interpolation function (LFIF for short) is proved to be still an LFIF. Based on the investigations dealing with the LFIF, box dimension of Riemann-Liouville fractional calculus of such functions is shown to be linear with respect to the order of Riemann-Liouville fractional calculus. Graphs and numerical results of certain example further certificate the conclusion.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.