崔艳艳,王朝君,刘浩.推广的Roper-Suffridge算子与Loewner链[J].数学年刊A辑,2017,38(2):159~176
推广的Roper-Suffridge算子与Loewner链
The Generalized Roper-Suffridge Operator and Loewner Chains
Received:June 23, 2015  Revised:January 01, 2016
DOI:10.16205/j.cnki.cama.2017.0013
中文关键词:  Spirallike mappings, Loewner chains, Roper-Suffridge operator
英文关键词:Spirallike mappings, Loewner chains, Roper-Suffridge operator
基金项目:本文受到国家自然科学基金(No.11271359,No.U1204618)和河南省教育厅科学技术研究重点项目(No.17A110041)的资助.
Author NameAffiliationE-mail
CUI Yanyan College of Mathematics and Statistics, Zhoukou NormalUniversity, Zhoukou 466001, Henan, China. cui9907081@163.com 
WANG Chaojun College of Mathematics and Statistics, Zhoukou NormalUniversity, Zhoukou 466001, Henan, China. wang9907081@163.com 
LIU Hao Department of Mathematics, Henan University, Kaifeng 475001, Henan, China. haoliu@henu.edu.cn 
Hits: 551
Download times: 533
中文摘要:
      将Roper-Suffridge算子在$\mathbb{C}^n$中单位球$B^n$上做了进一步推广,并考察推广后的算子何时能保持双全纯映照子族的性质. 利用$k$阶零点及双全纯映照子族的增长定理, 重点研究了推广后的算子在$B^{n}$ 上保持$\alpha$次$\beta$型螺形映照及强$\beta$型螺形映照的性质, 并由调和函数的最小值原理及具有正实部函数的性质, 揭示了推广后的算子能够嵌入Loewner链,从而得到推广后的算子在$B^{n}$ 上保持$\alpha$次殆$\beta$型螺形映照的性质.
英文摘要:
      The authors extend the Roper-Suffridge operator to the unit ball $B^n$ in $\mathbb{C}^n$, and seek conditions under which the extended operator preserves the properties of subclasses of biholomorphic mappings. By the zero of order $k$ and the growth theorems for subclasses of biholomorphic mappings, it is primarily studied that the extended operator preserves spirallikeness of order $\alpha$ and type $\beta$, strong spirallikeness of type $\beta$ on $B^{n}$. By the Minimum Principle for harmonic functions and the property of functions which have positive real parts, the extended operator can be embedded into a Loewner chain, and thus the extended operator preserves almost spirallikeness of type $\beta$ and order $\alpha$ on $B^{n}$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.