孙明保,张映辉,张再云,陈南博.一类对称函数的Schur 凸性及其应用[J].数学年刊A辑,2017,38(2):177~190
一类对称函数的Schur 凸性及其应用
Schur Convexity of a Class of Symmetric Functions with Its Applications
Received:April 23, 2015  Revised:May 09, 2016
DOI:10.16205/j.cnki.cama.2017.0014
中文关键词:  Symmetric functions, Schur convex, Schur multiplicative convex, Schur harmonic convex, Theory of majorization
英文关键词:Symmetric functions, Schur convex, Schur multiplicative convex, Schur harmonic convex, Theory of majorization
基金项目:本文受到国家自然科学基金(No.11271118,No.10871061,No.11301172,No.11671101), 湖南省自然科学基金(No.12JJ3002,No.2016JJ2061),湖南省教育厅资助科研项目(No.11A043,No.15B102), 湖南省重点学科建设项目(No.201176)和湖南省高校科技创新团队支持计划(No.2014207)的资助.
Author NameAffiliationE-mail
SUN Mingbao Corresponding author. School of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China. sun_mingbao@163.com 
ZHANG Yinghui School of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China. zhangyinghui1009@yahoo.com.cn 
ZHANG Zaiyun School of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China. zhangzaiyun1226@126.com 
CHEN Nanbo School of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China. flyingnb@126.com 
Hits: 657
Download times: 870
中文摘要:
      对 $x=(x_1, \cdots, x_n)\in [0, 1)^n\cup (1, +\infty)^n$, 定义对称函数 $${F_n}(x,r)={F_n}(x_1, x_2, \cdots, x_n; r)=\sum_{i_1+i_2+\cdots+i_n=r}\Big({\frac{1+x_1}{1-x_1}}\Big)^{i_1} \Big({\frac{1+x_2}{1-x_2}}\Big)^{i_2}\cdots\Big({\frac{1+x_n}{1-x_n}}\Big)^{i_n},$$ 其中$r\in\mathbb{N},\ i_1, i_2, \cdots , i_n$ 为非负整数. 研究了${F_n}(x,r)$的Schur 凸性、Schur 乘性凸性和Schur 调和凸性. 作为应用, 用控制理论建立了一些不等式, 特别地, 给出了高维空间的一些新的几何不等式.
英文摘要:
      For $x=(x_1, \cdots, x_n)\in [0, 1)^n\cup (1, +\infty)^n$, the symmetric function $F_n(x,r)$ is defined by $$ {F_n}(x,r)={F_n}(x_1, x_2, \cdots, x_n; r)=\sum_{i_1+i_2+\cdots+i_n=r}\Big({\frac{1+x_1}{1-x_1}}\Big)^{i_1} \Big({\frac{1+x_2}{1-x_2}}\Big)^{i_2}\cdots\Big({\frac{1+x_n}{1-x_n}}\Big)^{i_n}, $$ where $r\in\mathbb{N}$, and $i_1, i_2, \cdots , i_n$ are non-negative integers. In this paper, the Schur convexity, Schur multiplicative convexity and Schur harmonic convexity of ${F_n}(x,r)$ are investigated. As applications, the authors establish some inequalities by use of the theory of majorization. In particular, the authors give some new geometric inequalities in the $n$-dimensional space.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.