付鑫.L\"obell多面体上的小覆盖[J].数学年刊A辑,2017,38(2):227~242
L\"obell多面体上的小覆盖
Small Covers Over L\ddot\rm obell Polytopes
Received:October 10, 2014  Revised:June 26, 2015
DOI:10.16205/j.cnki.cama.2017.0018
中文关键词:  L"{o}bell polytope, Small cover, Coloring, Equivariant diffeomorphism
英文关键词:L"{o}bell polytope, Small cover, Coloring, Equivariant diffeomorphism
基金项目:
Author NameAffiliationE-mail
FU Xin School of Mathematical Sciences, Fudan University, Shanghai 200433, China. xfu10@fudan.edu.cn 
Hits: 552
Download times: 574
中文摘要:
      计算了L\"{o}bell多面体上的小覆盖的等变微分同胚类的个数. 在1991年, Davis和Januszkiewicz提出了小覆盖的概念, 给出了组合和拓扑间的一种直接联系, 并证明了单凸多面体上的特征映射($\mathbb{Z}_2^n$染色)与该多面体上的小覆盖一一对应. 文中作者给出了L\"{o}bell多面体上的自同构群和染色规律, 结合Burnside引理计算了一般的L\"{o}bell多面体上的小覆盖的等变微分同胚类的个数.
英文摘要:
      In this paper, the number of equivariant diffeomorphism classes of small covers over L\"{o}bell polytopes is calculated. The notion of small cover was introduced by Davis and Januszkiewicz in 1991, which gives a direct connection between topology and combinatorics, and it is proved that all small covers over a simple convex polytope $P^n$ correspond to all characteristic functions ($\mathbb{Z}_2^n$-colorings) defined on all facets of $P^n$. The author finds the automorphism of L\"{o}bell polytopes and the coloring number defined on them, and calculates the number of equivariant diffeomorphism classes of small covers over L\"{o}bell polytopes, with Burnside lemma applied.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.