李上钊.自同构群基柱为3D_4(q)的2-(v, k, 1)设计[J].数学年刊A辑,2017,38(3):289~294
自同构群基柱为3D_4(q)的2-(v, k, 1)设计
On the 2-(v, k, 1) Designs Admitting Automorphism Groups with Socle 3D_4(q)
Received:May 17, 2015  Revised:June 02, 2016
DOI:10.16205/j.cnki.cama.2017.0024
中文关键词:  Block-transitive, Point-primitive, Design, Automorphism
英文关键词:Block-transitive, Point-primitive, Design, Automorphism
基金项目:本文受到国家自然科学基金(No.11471054,No.11671402,No.11301377),江苏省自然科学基金(No.BK20161265,No.BK20170433),江苏省高校自然科学基金(No.16KJB110001),江苏省普通高校学术学位研究生科研创新计划项目(No.KYLX1213)和常熟理工学院科研项目(No.QZ1507)的资助.
Author NameAffiliationE-mail
LI Shangzhao School of Mathematics and Statistics, Changshu Institute of Technology,Changshu 215500, Jiangsu, China
School of Mathematics and Science, Soochow University, Suzhou 215006, Jiangsu, China. 
lszfd2004@163.com 
Hits: 685
Download times: 609
中文摘要:
      $2-(v, k, 1)$设计的存在性问题是组合设计理论中重要的问题, 当这类设计具有一个有意义自同构群时, 讨论其存在性是尤其令人感兴趣的. 30年前, 一个6人团队基本上完成了旗传递的$2-(v, k, 1)$设计分类. 此后, 人们开始致力于研究区传递但非旗传递的$2-(v, k, 1)$设计的分类课题. 本文证明了自同构群基柱为$^3D_4(q)$ 的区传递及点本原非旗传递的$2-(v, k, 1)$设计是不存在的.
英文摘要:
      One of the outstanding problems in combinatorial design theory concerns the existence of $2-(v, k, 1)$ designs. In particular, the existence of $2-(v, k, 1)$ designs admitting an interesting group of automorphisms is of great interest. Thirty years ago, a six-person team classified $2-(v, k, 1)$ designs which have flag-transitive automorphism groups. Since then, the effort has been to classify those $2-(v, k, 1)$ designs which are block-transitive but not flag-transitive. In this paper the author proves the nonexistence of $2-(v, k, 1)$ designs admitting a block-transitive and point-primitive but not flag-transitive automorphism group $G$ with socle $^3D_4(q)$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.