尚德生,张耀明.一类对称五次系统的极限环分支[J].数学年刊A辑,2017,38(3):339~364
一类对称五次系统的极限环分支
Limit Cycle Bifurcations of a Symmetric Quintic System
Received:February 13, 2014  Revised:January 14, 2017
DOI:10.16205/j.cnki.cama.2017.0029
中文关键词:  Perturbation, Singular point value, Homoclinic loop, Limit cycle
英文关键词:Perturbation, Singular point value, Homoclinic loop, Limit cycle
基金项目:本文受到山东省自然科学基金(No.Zr2010AZ003)的资助.
Author NameAffiliationE-mail
SHANG Desheng School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, Shandong, China. shangdesheng@sdut.edu.cn 
ZHANG Yaoming School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, Shandong, China. zym@sdut.edu.cn 
Hits: 786
Download times: 672
中文摘要:
      对一类对称五次近Hamilton系统在五次对称摄动下产生的极限环数目进行了研究. 通过多参数摄动理论和定性分析, 得到这类对称摄动下的五次系统至少可以存在28个极限环. %, 其分布见图7.
英文摘要:
      The authors study the number of limit cycles for a class of symmetric quintic near-Hamiltonian system under symmetric perturbations to the origin. Using multi-parameter perturbation theory and qualitative analysis, they find that the perturbed system can have at least 28 limit cycles.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.