白瑞蒲,李奇勇,张凯.3-李代数的广义导子[J].数学年刊A辑,2017,38(4):447~460 |
3-李代数的广义导子 |
Generalized Derivations of 3-Lie Algebras |
Received:February 28, 2015 Revised:January 04, 2017 |
DOI:10.16205/j.cnki.cama.2017.0036 |
中文关键词: 3-Lie algebra, Derivation, Generalized derivation, Quasiderivation, Quasicentroid |
英文关键词:3-Lie algebra, Derivation, Generalized derivation, Quasiderivation, Quasicentroid |
基金项目:本文受到国家自然科学基金(No.11371245)和河北省自然科学基金(No.A2014201006)的资助. |
Author Name | Affiliation | E-mail | BAI Ruipu | School of Mathematical Science, Huaiyin Normal University, Huai'an 223001, Jiangsu, China. | bairuipu@hbu.edu.cn | LI Qiyong | School of Mathematical Science, Huaiyin Normal University, Huai'an 223001, Jiangsu, China. | liqiyong2012@163.com | ZHANG Kai | School of Mathematical Science, Huaiyin Normal University, Huai'an 223001, Jiangsu, China. | zhangkai@hebau.edu.cn |
|
Hits: 1268 |
Download times: 858 |
中文摘要: |
给出了$3${-}李代数的广义导子、拟导子、拟型心的定义, 研究了他们之间的结构关系,
并对具有极大对角环面的$3${-}李代数的拟导子和拟型心结构进行了系统的研究.
证明了 (1) 广义导代数$G{\rm Der}(A)$ 可以分解成拟导子代数$Q{\rm Der}(A)$ 和拟型心
$Q\Gamma(A)$ 的直和; (2) $3${-}李代数$A$的拟导子可以扩张成一个具有较大维数的
$3${-}李代数的导子; (3) 拟导子代数$Q{\rm Der}(A)$ 包含在拟型心的正规化子中, 表示为
$[Q{\rm Der}(A), Q\Gamma(A)]\subseteq Q\Gamma(A)$; (4) 如果$A$ 包含极大对角环面$T$,
那么$Q{\rm Der}(A)$和$Q\Gamma(A)$是$T$的对角模, 也就是$(T, T)$半单地作用在$Q{\rm Der}(A)$和$Q\Gamma(A)$上. |
英文摘要: |
The authors introduce generalized derivations, quasiderivations and
quasicentroid of 3-Lie algebras, and studied their relations. They also
investigate the structure of quasiderivations and quasicentroid of
$3$-Lie algebras that contains a maximal diagonalized torus. It is
proved that (1) the generalized derivation algebra $G{\rm Der}(A)$ of a 3-Lie algebra $A$
is the direct sum of quasiderivation algebra $Q{\rm Der}(A)$ and quasicentroid
$Q\Gamma(A)$; (2) quasiderivations of $A$ can be embedded as derivations in a larger algebra;
(3) quasiderivation algebra $Q{\rm Der}(A)$ normalizes quasicentroid, that is,
$[Q{\rm Der}(A), Q\Gamma(A)]\subseteq Q\Gamma(A)$; (4) if $A$ contains a maximal diagonalized torus $T$,
then $Q{\rm Der}(A)$ and $Q\Gamma(A)$ are diagonalized $T$-modules, that is, as $T$-modules, $(T, T)$
semi-simplely acts on $Q{\rm Der}(A)$ and $Q\Gamma(A)$, respectively. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|