朱剑峰.调和映照的双Lipschitz性质[J].数学年刊A辑,2018,39(1):33~42
调和映照的双Lipschitz性质
Bi-Lipschitz Properties for Harmonic Mappings
Received:August 19, 2015  Revised:March 04, 2016
DOI:10.16205/j.cnki.cama.2018.0004
中文关键词:  调和映照, 调和拟共形映照, 双Lipshcitz条件, $H^p$空间, $h^p$空间
英文关键词:Harmonic mappings, Harmonic quasiconformal mappings,Bi-Lipschitz condition, $H^p$ space, $h^p$ space
基金项目:本文受到国家自然科学基金 (No.11501220, No.11471128), 福建省自然科学基金(No.2016J01020)和华侨大学中青年教师科研提升计划 (No.ZQN-YX110)的资助.
Author NameAffiliationE-mail
ZHU Jianfe School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, \linebreak Fujian, China. flandy@hqu.edu.cn 
Hits: 751
Download times: 1408
中文摘要:
      设$w(z)$为单位圆盘$\mathbf{U}$到约当区域$\Omega\subseteq \mathbf{C}$上的 调和映照. 给出$w(z)$具有Lipschitz性质的等价条件. 进一步地, 若$\Omega$为有界凸区域, 对其边界函数给出一个较弱的条件, 使得$w=P[f](z)$为调和拟共形映照.
英文摘要:
      Suppose that $w(z)$ is a harmonic mapping of the unit disk $\mathbf{U}$ onto a Jordan domain $\Omega\subseteq \mathbf{C}$. The author finds some equivalent conditions for the Lipschitz property of $w(z)$. Moreover, if $\Omega$ is a bounded convex domain, a weaker condition on the boundary function $f$ is found, such that $w(z)=P[f](z)$ is a harmonic quasiconformal mapping.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.