孙翠芳,汤 敏.关于丢番图方程(an)x+(bn)y=(cn)z[J].数学年刊A辑,2018,39(1):87~94
关于丢番图方程(an)x+(bn)y=(cn)z
On the Diophantine Equation (an)x
Received:April 06, 2015  Revised:May 01, 2016
DOI:10.16205/j.cnki.cama.2018.0009
中文关键词:  Je'{s}manowicz猜想, 丢番图方程, Fibonacci序列
英文关键词:Je'{s}manowicz' conjecture, Diophantine equation, Fibonacci sequence
基金项目:
Author NameAffiliationE-mail
SUN Cuifa School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui, China. cuifangsun@163.com 
TANG M School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui, China. tmzzz2000@163.com 
Hits: 988
Download times: 1292
中文摘要:
      设$n,a,b,c$是正整数, $\gcd(a,b,c)=1,\ a,b\geqslant 3$, 且丢番图方程$a^{x}+b^{y}=c^{z}$只有正整数解$(x,y,z)=(1,1,1)$. 证明了若$(x,y,z)$是丢番图方程$(an)^{x}+(bn)^{y}=(cn)^{z}$ 的正整数解且$(x,y,z)\neq (1,1,1)$, 则$y
英文摘要:
      Let $n,a,b,c$ be positive integers with $\gcd(a,b,c)=1,\ a,b\geqslant 3$ and the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(1,1,1)$. In this paper, the authors prove that if $(x,y,z)$ is a positive integer solution of the Diophantine equation $(an)^{x}+(bn)^{y}=(cn)^{z}$ with $(x,y,z)\neq (1,1,1)$, then $y
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.