高锁刚,薛慧娟,侯 波.基于有限辛空间的一致偏序集和Leonard对[J].数学年刊A辑,2018,39(1):95~112
基于有限辛空间的一致偏序集和Leonard对
Uniform Posets and Leonard Pairs Based on Symplectic Spaces over Finite Fields
Received:January 20, 2015  Revised:December 05, 2015
DOI:10.16205/j.cnki.cama.2018.0010
中文关键词:  有限域, 辛空间, 一致偏序集, Leonard对
英文关键词:Finite field, Symplectic space, Uniform poset, Leonard pair
基金项目:本文受到国家自然科学基金 (No.11471097)和河北省自然科学基金(No.A2017403010)的资助.
Author NameAffiliationE-mail
GAO Suogang College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China. sggaomail@163.com 
XUE Huijuan College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China. 746979683@qq.com 
HOU Bo Corresponding author. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China. houbo1969@163.com 
Hits: 657
Download times: 1118
中文摘要:
      设$\mathbb{F}_{q}$ 为$q$ 个元素的有限域,$q$ 是一个素数的幂. 令$\mathbb{F}_{q}^{(2\nu)}$ 是$\mathbb{F}_{q}$ 上的$2\nu$维辛空间, ${\mathcal{M}(m,s;2\nu)}$ 表示辛群作用在$\mathbb{F}_{q}^{(2\nu)}$ 上的子空间的轨道.$\mathcal{L}{(m,s;2\nu)}$ 是${\mathcal{M}(m,s;2\nu)}$ 的子空间生成的集合. 若按照子空间的包含关系来规定$\mathcal{L}{(m,s;2\nu)}$ 的序, 则得一偏序集, 记为$\mathcal{L}_{O}{(m,s;2\nu)}$. 本文, 首先构造了$\mathcal{L}{(m,s;2\nu)}$上的子偏序集$\mathcal{L}_{O}{(m,s;2\nu)}$, 然后证明这个子偏序集是强一致偏序的. 最后利用这个偏序集构造了Leonard对.
英文摘要:
      Let $\mathbb{F}_q^{(2\nu)}$ be the $2\nu$-dimensional symplectic space over the finite field $\mathbb{F}_q$, and let ${\mathcal{M}(m,s;2\nu)}$ denote the orbit of subspaces of $\mathbb{F}_q^{(2\nu)}$ under the symplectic group. Denote by $\mathcal{L}{(m,s;2\nu)}$ the set of subspaces generated by ${\mathcal{M}(m,s;2\nu)}$. By ordering $\mathcal{L}{(m,s;2\nu)}$ by ordinary inclusion, the poset denoted $\mathcal{L}_{O}{(m,s;2\nu)}$ is obtained. In this paper, the authors first construct the subposet of $\mathcal{L}_{O}{(m,s;2\nu)}$. Then it is shown that this subposet is strongly uniform and construct Leonard pairs from it.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.