程美芳,孙 伟,束立生.一类振荡积分算子在Wiener 共合空间上的有界性[J].数学年刊A辑,2018,39(2):113~126
一类振荡积分算子在Wiener 共合空间上的有界性
Boundedness Properties of Certain Oscillatory Integrals on Wiener Amalgam Space
Received:November 28, 2016  Revised:July 13, 2017
DOI:10.16205/j.cnki.cama.2018.0011
中文关键词:  Wiener共合空间, 强奇异积分算子, 调幅空间
英文关键词:Wiener amalgam space, Strongly singular integral operator, Modulation space
基金项目:本文受到国家自然科学基金(No.11201003, No.11771223)和安徽省高校自然科学基金(No.KJ2017ZD27, No.KJ2015A117)的资助.
Author NameAffiliationE-mail
CHENG Meifa Corresponding author. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, Anhui, China. cmf78529@mail.ahnu.edu.cn 
SUN W School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, Anhui, China. shulsh@mail.ahnu.edu.cn 
SHU Lishe School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, Anhui, China. shulsh@mail.ahnu.edu.cn 
Hits: 818
Download times: 1194
中文摘要:
      假设 $a, b>0$ 并且 $$ K_{a,b}(x)=\dfrac{\rme^{\rmi |x|^{-b}}}{|x|^{n+a}}. $$ 定义强奇异卷积算子$T$如下: $$ Tf(x)=(K_{a,b}\ast f)(x), $$ 本文主要考虑了如上定义的算子$T$在Wiener共合空间$W(\mathcal{F}L^{p},L^{q})({\mathbb{R}}^{n})$上的有界性. 另一方面, 设$\alpha,\beta>0$ 并且 $\gamma(t)=|t|^{k}$ 或 $\gamma(t)={\rm sgn}(t)|t|^{k}$. 利用振荡积分估计, 本文还研究了算子 $$ T_{\alpha,\beta}f(x,y)=\text{p.v.}\int_{-1}^{1}f(x-t,y-\gamma(t))\frac{\rme^{-2\pi \rmi|t|^{-\beta}}}{t|t|^{\alpha}}\rmd t $$ 及其推广形式 $$ \Lambda_{\alpha,\beta}f(x,y,z)=\int_{Q^{2}}f(x-t,y-s,z-t^{k}s^{j})\rme^{-2\pi\rmi t^{-\beta_1}s^{-\beta_2}}t^{-\alpha_1-1}s^{-\alpha_2-1}\rmd t\rmd s $$ 在Wiener共合空间$W(\mathcal{F}L^{p},L^{q})$上的映射性质. 本文的结论足以表明, Wiener共合空间是Lebesgue空间的一个很好的替代.
英文摘要:
      Suppose $a, b>0$ and $$ K_{a,b}(x)=\dfrac{\rme^{\rmi |x|^{-b}}}{|x|^{n+a}}. $$ The first task in this paper is to study the boundedness properties of the strongly singular convolution operator $Tf(x)=(K_{a,b}\ast f)(x)$ on Wiener amalgam spaces $W(\mathcal{F}L^{p},L^{q})({\mathbb{R}}^{n})$. If $\alpha,\beta>0$ and $\gamma(t)=|t|^{k}$ or $\gamma(t)={\rm sgn}(t)|t|^{k}$, the second task of this paper is to investigate the mapping properties of the operator defined by $$ T_{\alpha,\beta}f(x,y)=\text{p.v.}\int_{-1}^{1}f(x-t,y-\gamma(t))\frac{\rme^{-2\pi\rmi |t|^{-\beta}}}{t|t|^{\alpha}}\rmd t $$ and its general form given by $$ \Lambda_{\alpha,\beta}f(x,y,z)=\int_{Q^{2}}f(x-t,y-s,z-t^{k}s^{j})\rme^{-2\pi\rmi t^{-\beta_1}s^{-\beta_2}}t^{-\alpha_1-1}s^{-\alpha_2-1}\rmd t\rmd s $$ on Wiener amalgam spaces $W(\mathcal{F}L^{p},L^{q})$. The essential tool of this paper is the oscillatory integral estimation. The results of this paper show that Wiener amalgam spaces are good substitutions for Lebesgue spaces.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.