刘颖博.三维拟线性波方程的小初值光滑解[J].数学年刊A辑,2018,39(2):127~144
三维拟线性波方程的小初值光滑解
Small Data Solutions of 3-D Quasilinear Wave Equations
Received:July 24, 2016  Revised:May 06, 2017
DOI:10.16205/j.cnki.cama.2018.0012
中文关键词:  整体解, 零标架, 加权能量估计, 连续论证法
英文关键词:Global existence, Null frame, Weighted energy estimate, Continuous induction
基金项目:本文受到国家自然科学基金(No.11371189)的资助.
Author NameAffiliationE-mail
LIU Yingbo School of Science, China Pharmaceutical University, Nanjing 210009, China. lyb11206@163.com 
Hits: 678
Download times: 1144
中文摘要:
      对三维小初值拟线性波方程$\sum\limits_{i,j=0}^3g^{ij}( u)\p_{ij}u=0$, H. Lindblad 证明了它有整体光滑解. 本文考虑如下带有小初值的拟线性波方程$\sum\limits_{i,j=0}^3g^{ij}(u)\p_{ij} u=(\p u)^3$, 通过得到低阶导数的衰减估计和高阶导数的能量估计, 由连续论证法证明了这个方程也存在整体光滑解.
英文摘要:
      For the 3-D quasilinear wave equation $\sum\limits_{i,j=0}^3g^{ij}(u)\p_{ij}u=0$, a global existence result has been shown by H. Lindblad. This paper deals with this 3-D quasilinear wave equation $\sum\limits_{i,j=0}^3g^{ij}(u)\p_{ij} u=(\p u)^3$ with small initial data. Through deriving decay estimates of low derivatives and energy estimates for high derivatives, combined with known weighted energy inequality, a global existence solution is also established by continuous induction.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.