张伦传.一类 Markov 模算子半群与相应的算子值 Dirichlet 型刻画[J].数学年刊A辑,2018,39(2):199~210
一类 Markov 模算子半群与相应的算子值 Dirichlet 型刻画
Characterization of Class of Markov Module Operator Semigroups and the Corresponding Operator-Valued Dirichlet Forms
Received:October 16, 2015  Revised:January 06, 2017
DOI:10.16205/j.cnki.cama.2018.0019
中文关键词:  ${rm II}_1$型因子, Hilbert $w^*${-}双模, Markov 模算子半群, 算子值 Dirichlet 型
英文关键词:${rm II}_1$ factor, Hilbert $w^*$-bimodule, Markov module operator semigroup, Operator-valued Dirichlet form
基金项目:
Author NameAffiliationE-mail
ZHANG Lunchuan Department of Mathematics, Renmin University of China, Beijing 100086, China. zhanglc@ruc.edu.cn 
Hits: 911
Download times: 1293
中文摘要:
      本文基于${\rm II}_1${-}型因子把非交换对称 Dirichlet 型理论推广到算子值情形. 在此框架下建立了算子值 Dirichlet 型, Markov 模算子半群及 Markov 预解集之间的一一对应关系.
英文摘要:
      The theory of noncommutative symmetric Dirichlet forms is generalized to the operator-valued cases based on ${\rm II}_1$ factor. The author establishes the natural correspondence among operator-valued Dirichlet forms, Markov module operator semigroups and Markovian resolvents within this context.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.