顾晶晶,曹喜望.某些对角方程在有限域上的解数[J].数学年刊A辑,2018,39(2):211~218
某些对角方程在有限域上的解数
The Number of Solutions of Certain Diagonal Equations over Finite Fields
Received:June 18, 2015  Revised:August 17, 2017
DOI:10.16205/j.cnki.cama.2018.0020
中文关键词:  对角方程, 解数, Gauss和, Jacobi和, 有限域
英文关键词:Diagonal equation, Number of solutions, Gaussian sum, Jacobi sum, Finite field
基金项目:本文受到国家自然科学基金(No.11371011)的资助.
Author NameAffiliationE-mail
GU Jingjing College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China. ycgujingjing@126.com 
CAO Xiwang College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China. xwcao@nuaa.edu.cn 
Hits: 694
Download times: 1153
中文摘要:
      主要运用Gauss和以及Jacobi和的相关性质给出两类对角方程在有限域上的解数公式, 分别是形如$\sum\limits_{i=1}^{s}a_ix^{m_i}_i=c$的对角方程, 其中$a_i$, $c\in\mathbb F_{q^2}^*$, $(m_i,m_j)=1$, $m_i|(q+1)$, $m_i$为奇数或$\frac{q+1}{m_i}$为偶数, $i=1,2,\cdots, s$, 以及形如$\sum\limits_{i=1}^{s}x^m_i=c$的对角方程, 其中$c\in\mathbb F_q^*$, $m|(q+1)$, $m$ 为奇数或$\frac{q+1}{m}$ 为偶数.
英文摘要:
      In this paper, using some properties about Gaussian sums and Jacobi sums, the authors get the explicit formulas for the number of solutions of the equation $\sum\limits_{i=1}^{s}a_ix_i^{m_i}=c$, where $a_i$, $c\in\mathbb F_{q^2}^*$, $(m_i,m_j)=1$, $m_i|(q+1)$, $m_i$ odd or $\frac{q+1}{m_i}$is even, $i=1,2,\cdots,s$, and the equation $\sum\limits_{i=1}^{s}x_i^{m}=c$, where $c\in\mathbb F^*_q$, $m|(q+1)$, $m$ odd or $\frac{q+1}{m}$ is even.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.