李兴校,宋虹儒.单位球面中具有3个不同 Blaschke 特征值的 Blaschke 平行子流形[J].数学年刊A辑,2018,39(3):249~272 |
单位球面中具有3个不同 Blaschke 特征值的 Blaschke 平行子流形 |
On the Blaschke Parallel Submanifolds in the Unit Sphere with Three Distinct Blaschke Eigenvalues |
Received:April 29, 2016 Revised:March 21, 2017 |
DOI:10.16205/j.cnki.cama.2018.0023 |
中文关键词: 平行 Blaschke 张量, 消失的 mo 形式, 常 数量曲率, 平行 平均曲率向量 |
英文关键词:Parallel Blaschke tensor, Vanishing mo form, Constant scalar curvature, Parallel mean curvature vector |
基金项目:本文受到国家自然科学基金(No.11671121, No.11171091, No.11371018)的资助. |
|
Hits: 1594 |
Download times: 1663 |
中文摘要: |
Blaschke 张量 $A$ 是单位球面 $\bbs^n$中子流形的 \mo 微分几何的一个基本不变量,
而$A$的特征值称为 Blaschke 特征值. 作者研究了$\bbs^n$ 中 具有平行 Blaschke
张量的子流形(简称为 {Blaschke 平行子流形}). 主要结果是对 $\bbs^n$
中具有3个不同 Blaschke 特征值 的 Blaschke 平行 子流形进行了完全的分类. |
英文摘要: |
As is known, the Blaschke tensor $A$ (a symmetric covariant $2$-tensor) is one of the fundamental \mo
invariants in the \mo differential geometry of submanifolds in the unit sphere $\bbs^n$, and the
eigenvalues of $A$ are referred to as the Blaschke eigenvalues. This paper deals with the
submanifolds in $\bbs^n$ with parallel Blaschke tensor which are called Blaschke parallel submanifolds.
The main theorem of this paper is the classification of Blaschke parallel submanifolds in $\bbs^n$
with exactly three distinct Blaschke eigenvalues. |
View Full Text View/Add Comment Download reader |
Close |