朱超娜.f-Laplace非线性方程的梯度估计和 Liouville定理[J].数学年刊A辑,2018,(4):349~366
f-Laplace非线性方程的梯度估计和 Liouville定理
Gradient Estimates and Liouville Theorems of a Nonlinear Equation for f-Laplacian
Received:March 03, 2017  
DOI:10.16205/j.cnki.cama.2018.0030
中文关键词:  Gradient estimate, Liouville theorem, $f$-Laplacian
英文关键词:Gradient estimate, Liouville theorem, $f$-Laplacian
基金项目:
Author NameAffiliationE-mail
ZHU Chaona School of Mathematical Sciences, University of Scienceand Technology of China, Hefei 230026, China. zcn1991@mail.ustc.edu.cn 
Hits: 943
Download times: 964
中文摘要:
      设 $(M, g, \rme^{-f}\rmd v_g)$ 是$n$维完备光滑的度量测度空间. 考虑以下非线性椭圆方程 \begin{align*} \triangle_{f}u+hu^\alpha=0,\ \ 1<\alpha<\frac{n+m}{n+m-2}\quad (n+m\geq4) \end{align*} 和非线性抛物方程 $$ \Big(\triangle_f-\frac{\partial}{\partial t}\Big)u+hu^{\alpha}=0, \quad \alpha>0 $$ 正解的梯度估计. 对于经典的Laplace情形, Li ( Li J. Gradient estimates and harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds [J]. {\it J Funct Anal}, 1991, 100:233--256.) 证明了正解的梯度估计和Liouville定理. 在本文中, 对于上述的$f${-}Laplace方程, 作者将推导出相应的结果.
英文摘要:
      Let $(M, g, \rme^{-f}\rmd v_g)$ be an $n$-dimensional complete smooth metric measure space. The author considers gradient estimates for the positive solutions to the following nonlinear elliptic equation and nonlinear parabolic equation $$ \triangle_{f}u+hu^\alpha=0,\ \ 1<\alpha<\frac{n+m}{n+m-2}\ \ (n+m\geq4) $$ and $$\Big(\triangle_f-\frac{\partial}{\partial t}\Big)u+hu^{\alpha}=0,\ \ \alpha>0$$ on $M$. For the classical Laplacian, Li (Li J. Gradient estimates and harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds [J]. {\it J Funct Anal}, 1991, 100:233--256.) proved the gradient estimates and Liouville theorems. In this paper, the similar results for $f$-Laplacian are derived.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.