冯宇,史毅茜,许斌.共形双曲度量的孤立奇点[J].数学年刊A辑,2019,(1):015~26
共形双曲度量的孤立奇点
Isolated Singularities of Conformal Hyperbolic Metrics
Received:November 18, 2017  Revised:June 06, 2018
DOI:10.16205/j.cnki.cama.2019.0002
中文关键词:  Hyperbolic metric, Conical singularity, Cuspsingularity, Developing map
英文关键词:Hyperbolic metric, Conical singularity, Cuspsingularity, Developing map
基金项目:
Author NameAffiliationE-mail
FENG Yu School of Mathematical Sciences, University of Science andTechnology of China, Hefei 230026, China. yuf@mail.ustc.edu.cn 
SHI Yiqian School of Mathematical Sciences, University of Science andTechnology of China, Hefei 230026, China. yqshi@ustc.edu.cn 
XU Bin Corresponding author. School of Mathematical Sciences,University of Science and Technology of China, Hefei 230026, China. bxu@ustc.edu.cn 
Hits: 1478
Download times: 1948
中文摘要:
      Nitsche证明了共形双曲度量的孤立奇点要么是锥奇点, 要么是尖奇点, 二者必其一(Nitsche J. {\"{U}}ber die isolierten singularit{\"{a}}ten der L{\"{o}}sungen von $\Delta u=\rme^{u}$ [J]. {\it Math Z}, 1957, 68(3):316--324.). 本文利用展开映射证明了在孤立奇点附近存在复坐标 $z$, 使得度量要么为$\displaystyle{\frac{4\alpha^2\vert z \vert^{2\alpha-2}}{(1-\vert z \vert ^{2\alpha})^2}\vert \mathrm{d} z \vert^2}$, 其中 $\alpha>0$, 要么为$\displaystyle{\vert z \vert ^{-2}\big(\ln|z|\big)^{-2}|\rmd z|^{2}}$.\\
英文摘要:
      Nitsche proved that an isolated singularity of a conformal hyperbolic metric is either a conical singularity or a cusp one (Nitsche, J., {\"{U}}ber die isolierten singularit{\"{a}}ten der L{\"{o}}sungen von $\Delta u=\rme^{u}$, {\it Math. Z}, 1957, vol.\;68, no.\;3, pp.\;316--324.). The authors prove that there exists a complex coordinate $z$ centered at the singularity where the metric has the expression of either $\displaystyle{\frac{4\alpha^2\vert z \vert^{2\alpha-2}} {(1-\vert z \vert ^{2\alpha})^2}\vert \mathrm{d} z \vert^2}$ with $\alpha>0$ or $\displaystyle{\vert z \vert ^{-2}\big(\ln|z|\big)^{-2}|\rmd z|^{2}}$ by developing map. \\
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.