宋阳.单调性条件下G-Brown运动驱动的倒向随机微分方程[J].数学年刊A辑,2019,40(2):177~198
单调性条件下G-Brown运动驱动的倒向随机微分方程
Backward Stochastic Differential Equations Driven by G-Brownian Motion Under a Monotonicity Condition
Received:October 19, 2016  Revised:July 14, 2018
DOI:10.16205/j.cnki.cama.2019.0015
中文关键词:  G-Brownian motion, Backward SDEs, Monotonicity condition
英文关键词:G-Brownian motion, Backward SDEs, Monotonicity condition
基金项目:
Author NameAffiliationE-mail
SONG Yang School of Mathematical Sciences, Fudan University, Shanghai 200433, China. yangsong13@fudan.edu.cn 
Hits: 1161
Download times: 1248
中文摘要:
      研究了由$G${-}Brown运动驱动的倒向随机微分方程 \begin{align*} Y_{t}=\xi+\int_{t}^{T}f(s, Y_{s}, Z_{s})\rmd s-\int_{t}^{T}Z_{s}\rmd B_{s}-(K_{T}-K_{t}), \quad 0\leq t \leq T \end{align*} 解的存在唯一性问题.其生成元$f$关于$z$是Lipschitz连续的, 关于$y$是线性增长且满足单调性条件.
英文摘要:
      In this paper, the solution of backward stochastic differential equations driven by a $G${-}Brownian motion ($G$-BSDE for short): $$ Y_{t}=\xi+\int_{t}^{T}f(s, Y_{s}, Z_{s})\rmd s-\int_{t}^{T}Z_{s}\rmd B_{s}-(K_{T}-K_{t}), \quad0\leq t\leq T $$ is studied, with a generator which is Lipschitz in $Z$, uniformly continuous with linear growth and satisfying a monotonicity condition in $Y$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.