徐涛,刘合国,余杨.关于有限Abelp-群的自同构群[J].数学年刊A辑,2019,40(2):199~210
关于有限Abelp-群的自同构群
On the Automorphism Groups of Finite Abelian p-Groups
Received:March 26, 2016  Revised:December 27, 2016
DOI:10.16205/j.cnki.cama.2019.0016
中文关键词:  Finite abelian $p$-group, Automorphism group, Frattini subgroup
英文关键词:Finite abelian $p$-group, Automorphism group, Frattini subgroup
基金项目:本文受到国家自然科学基金(No.11626078,No.11371124)和河北省教育厅青年基金(No.QN2016184)的资助.
Author NameAffiliationE-mail
XU Tao Department of Science, Hebei University of Engineering,Handan 056038, Hebei, China. gtxutao@163.com 
LIU Heguo College of Mathematics and Statistics, Hubei University,Wuhan 430062, China. ghliu@hubu.edu.cn 
YU Yang College of Mathematics and Statistics, Hubei University,Wuhan 430062, China. 459193638@qq.com 
Hits: 1044
Download times: 1166
中文摘要:
      从有限Abel~$p${-}群$P$的型不变量出发, 给出了其自同构群$\mbox{Aut}P$的阶的计算公式, 并利用$|\mbox{Aut}P|$的计算公式得到了下面3个结果: 1. 由有限Abel~$p${-}群的型不变量的两种变换得到了其自同构群的阶的变化规律; 2. 用群的阶、 秩、 幂指数三个量界定了有限Abel~$p${-}群的自同构的阶; 3. 对部分$\mbox{Frattini}$子群为$p$阶群的有限$p${-}群, 确定了其自同构群的阶何时达到最小值和最大值.
英文摘要:
      Starting from the invariant of a finite abelian $p$-group $P$, the authors obtain the computational formula of the order of its automorphism group $\mbox{Aut}P$. Three applications of this computational formula are given as follows. Firstly, they find some properties on the order of its automorphism group from two transformations of invariant of a finite abelian $p$-group. Secondly, they estimate the order of automorphism of a finite abelian $p$-group by a function depending on order, rank and exponent of this group. Thirdly, letting $P$ be a finite $p$-group with Frattini subgroup of prime order, they give the conditions to guarantee the order of $\mbox{Aut}P$ attains the maximal value or minimal value, respectively.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.