李冠巡,刘晗,张世金,郑毅.Bakry-Émery里奇曲率下的Calabi-型定理[J].数学年刊A辑,2019,40(3):335~348
Bakry-Émery里奇曲率下的Calabi-型定理
On a Theorem of Calabi for Bakry-\'Emery Ricci Tensor
Received:May 23, 2017  Revised:November 12, 2018
DOI:10.16205/j.cnki.cama.2019.0025
中文关键词:  Myers-type theorem, Bakry-'Emery Ricci curvature, Riccati equation
英文关键词:Myers-type theorem, Bakry-'Emery Ricci curvature, Riccati equation
基金项目:
Author NameAffiliationE-mail
LI Guanxun School of Mathematics and Systems Science, Beihang University, Beijing 100191, China. 641783717@qq.com 
LIU Han School of Mathematics and Systems Science, Beihang University, Beijing 100191, China. 1242073963@qq.com 
ZHANG Shijin Corresponding author. School of Mathematics and Systems Science, Beihang University, Beijing 100191, China. shijinzhang@buaa.edu.cn 
ZHENG Yi School of Mathematics and Systems Science, Beihang University, Beijing 100191, China. zhengyitangshan@163.com 
Hits: 1108
Download times: 1054
中文摘要:
      得到了两个关于黎曼流形上Bakry-\'Emery里奇曲率沿着测地线的积分估计. 作为应用, 得到了两个Calabi定理的推广结果, 即得到了流形是紧致的充分条件.
英文摘要:
      In this paper, the authors obtain two theorems about the estimate for the integral of the Bakry-\'Emery Ricci curvature along a geodesic on Riemannian manifold. As an application, the authors obtain the sufficient conditions for compactness. They are as generalizations of one theorem of Calabi.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.