俞励超.带跳线性随机微分方程的近似能控性[J].数学年刊A辑,2019,40(4):417~426 |
带跳线性随机微分方程的近似能控性 |
Approximate Controllability of Linear Stochastic Differential Equations with Random Jumps |
Received:March 04, 2018 Revised:February 18, 2019 |
DOI:10.16205/j.cnki.cama.2019.0031 |
中文关键词: Controllability, Possion random measure, LQ optimal control, Riccati equations |
英文关键词:Controllability, Possion random measure, LQ optimal control, Riccati equations |
基金项目: |
|
Hits: 1522 |
Download times: 1908 |
中文摘要: |
研究了Poisson随机测度驱动的线性随机微分方程的近似能控性, 通过对偶方法,
得到了近似能控性的一个代数判据: 由方程系数决定的某种不变空间$\textbf{V}$是退化空间~\{0\}.
此外, 还给出了有限步计算验证该判据的程序算法. |
英文摘要: |
The author investigate the approximate controllability of linear
stochastic equations with control acting on the noise terms driven
by Poisson random measures. By a dual approach, an algebraic
criterion for approximate controllability is given: some invariant
linear space $\textbf{V}$ determined by the coefficients of the
equation is the trivial space \{0\}. Furthermore, an iterative
finite scheme to compute the space $\textbf{V}$ is provided. |
View Full Text View/Add Comment Download reader |
Close |