刘洋,鲁自群,张继平.具有两个p'维非线性不可约特征标的非可解群[J].数学年刊A辑,2020,41(1):039~52
具有两个p'维非线性不可约特征标的非可解群
Nonsolvable Groups with Two Nonlinear Irreducible Characters of p'-Degrees
Received:May 25, 2018  
DOI:10.16205/j.cnki.cama.2020.0003
中文关键词:  McKay conjecture, Character degrees, Nonsolvable groups
英文关键词:McKay conjecture, Character degrees, Nonsolvable groups
基金项目:
Author NameAffiliationE-mail
LIU Yang Corresponding author. School of Mathematical Science, Tianjin Normal University, Tianjin 300387, China. liuyang@math.pku.edu.cn 
LU Ziqun Department of Mathematical Science, Tsinghua University, Beijing 100084, China. zlu@tsinghua.edu.cn 
ZHANG Jiping BICMR, Peking University, Beijing 100871, China. jzhang@pku.edu.cn 
Hits: 681
Download times: 539
中文摘要:
      McKay 猜想是有限群表示理论中的一个重要问题. 本文考虑了具有两个$p'$维不可约特征标的非可解群群 $G$, 并证明了McKay猜想对此类群成立. 更进一步, 当$p$为奇素数时, 下面结果成立: $p=3$, $G\cong \mathrm{PSL}_2(7)$或存在一个正规$2${-}群$N$, 满足 $G/N\cong \mathrm{PSL}_2(5)$.
英文摘要:
      McKay conjecture is an important problem in representation theory of finite groups. In this paper, the authors consider nonsolvable group with two $p'$-degree characters and prove the conjecture holds for such group. Furthermore, they show that if $G$ is a nonsolvable group such that $|\mathrm{Irr}_1(G,p')|=2$ for odd prime $p$, then $p=3$, and $G\cong \mathrm{PSL}_2(7)$ or there exists a normal $2$-subgroup $N$ such that $G/N\cong \mathrm{PSL}_2(5)$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.