刘苏卉,苏丹.解析簇上非孤立奇点的C0-R_V-V(f) -充分性[J].数学年刊A辑,2020,41(1):077~90
解析簇上非孤立奇点的C0-R_V-V(f) -充分性
C0-R_V-V(f) -sufficiency of Non-isolated Singularity on Analytic Varieties
Received:January 16, 2018  
DOI:10.16205/j.cnki.cama.2020.0006
中文关键词:  Non-isolated singularities, $C^{1}mbox{-}mathcal{R}_{V}mbox{-}mathcal{V}(f)mbox{-}$Sufficiency, Vector field
英文关键词:Non-isolated singularities, $C^{1}mbox{-}mathcal{R}_{V}mbox{-}mathcal{V}(f)mbox{-}$Sufficiency, Vector field
基金项目:本文受到国家自然科学基金青年项目(No.11501103)的资助.
Author NameAffiliationE-mail
LIU Suhui School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China. 1712080@wit.edu.cn 
SU Dan School of Statistics, University of International Business and Economics, Beijing 100029, China. sudan@uibe.edu.cn 
Hits: 934
Download times: 527
中文摘要:
      给出了某类解析簇上具有非孤立奇点的函数芽$f$在某种等价关系下的 $C^{0}\mbox{-}\mathcal{R}_{V}\mbox{-}\mathcal{V}(f)\mbox{-}$充分性及它的某些形变平凡性的充分条件. 它推广了具有非孤立奇点的函数芽的$\mathcal{R}\mbox{-}Z\mbox{-}$充分性的一个判别准则.
英文摘要:
      This paper provides some sufficient conditions for $C^{0}\mbox{-}\mathcal{R}_{V}\mbox{-}\mathcal{V}(f)\mbox{-}$sufficiency of a function germ $f$ defined on an analytic variety $V$ with non-isolated singularities and $C^{0}\mbox{-}\mathcal{R}_{V}\mbox{-}\mathcal{V}(f)\mbox{-}$triviality of some deformations of the function germ $f$ under an equivalence. It is generalized that a criterion on the $C^{0}\mbox{-}Z\mbox{-}$sufficiency for function germs with non-isolated singularities.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.